×

zbMATH — the first resource for mathematics

A finite element method for localized failure analysis. (English) Zbl 0597.73105
A method is proposed which aims at enhancing the performance of general classes of elements in problems involving strain localization. The method exploits information concerning the process of localization which is readily available at the element level. A bifurcation analysis is used to determine the geometry of the localized deformation modes. When the onset of localization is detected, suitably defined shape functions are added to the element interpolation which closely reproduce the localized modes. The extra degrees of freedom representing the amplitudes of these modes are eliminated by static condensation. The proposed methodology can be applied to 2-D and 3-D problems involving arbitrary rate-independent material behavior. Numerical examples demonstrate the ability of the method to resolve the geometry of localized failure modes to the highest resolution allowed by the mesh.

MSC:
74R99 Fracture and damage
74S99 Numerical and other methods in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chang, Y.W.; Asaro, R.J., An experimental study of shear localization in aluminum-copper single crystals, Acta metall., 29, 241-257, (1981)
[2] Costin, L.S.; Chrisman, E.E.; Hawley, R.H.; Duffy, J., On the localization of plastic flow in mild steel tubes under dynamic torsional loading, (), 90-100
[3] Cox, T.B.; Low, J.R., An investigation of the plastic fracture of AISI 4340 and 18 nickel-200 grade maraging steels, Metall. trans., 5, 1457-1470, (1974)
[4] Vardoulakis, I., Bifurcation analysis of the triaxial test on sand samples, Acta mech., 32, 35-54, (1979) · Zbl 0402.73086
[5] Vardoulakis, I., Rigid granular plasticity model and bifurcation in the triaxial test, Acta mech., 49, 57-79, (1983) · Zbl 0522.73085
[6] Waversik, W.R.; Brace, W.F., Post-failure behavior of a granite and a diabase, Rock mech., 3, 61, (1971)
[7] Van Mier, J.G.M., Strain-softening of concrete under multiaxial loading conditions, () · Zbl 1342.74003
[8] Hutchinson, J.W.; Tvergaard, V., Surface instabilities on statically strained plastic solids, Internat. J. mech. sci., 22, 339-354, (1980) · Zbl 0428.73034
[9] Saje, M.; Pan, J.; Needleman, A., Void nucleation effects on shear localization in porous plastic solids, Internat. J. fracture, 17, 163-182, (1982)
[10] Tvergaard, V.; Needleman, A.; Lo, K.K., Flow localization in the plane strain tensile test, J. mech. phys. solids, 29, 2, 115-142, (1981) · Zbl 0462.73082
[11] Tvergaard, V., Ductile fracture by cavity nucleation between larger voids, J. mech. phys. solids, 30, 265-286, (1982) · Zbl 0491.73118
[12] Needleman, A.; Tvergaard, V., On the finite element analysis of localized plastic deformation, (), 94-157
[13] Hadamard, J., Leçons sur la propagation des ondes et LES equations de L’hydrodynamique, (1903), Hermann Paris, Ch. 6. · JFM 34.0793.06
[14] Hill, R., Acceleration waves in solids, J. mech. phys. solids, 10, 1-16, (1962) · Zbl 0111.37701
[15] Mandel, J., Conditions de stabilité et postulat de Drucker, (), 58-68
[16] Thomas, T.Y., Plastic flow and fracture in solids, (1961), Academic Press New York · Zbl 0081.39803
[17] Rice, J.R., The localization of plastic deformation, (), 207-220
[18] Prevost, J.H.; Hughes, T.J.R., Finite-element solution of elastic-plastic boundary value problems, ASME J. appl. mech., 48, 1, 69-74, (1981) · Zbl 0449.73085
[19] Prevost, J.H., Localization of deformations in elastic-plastic solids, Internat. J. numer. analyt. meths. geomech., 8, 187-196, (1984) · Zbl 0532.73071
[20] Willam, K.J.; Bicanic, N.; Sture, S., Constitutive and computational aspects of strain-softening and localization in solids, (), 233-252
[21] Irons, B.M., Numerical integration applied to finite element methods, () · Zbl 0208.53303
[22] Taylor, R.L.; Beresford, P.J.; Wilson, E.L., A non-conforming element for stress analysis, Internat. J. numer. meths. engrg., 10, 1211-1219, (1976) · Zbl 0338.73041
[23] Pietruszcak, S.T.; Mroz, Z., Finite element analysis of deformation of strain softening materials, Internat. J. numer. meths. engrg., 17, 327-334, (1981) · Zbl 0461.73063
[24] Nagtegaal, J.C.; Parks, D.M.; Rice, J.R., On numerically accurate finite element solutions in the fully plastic range, Comput. meths. appl. mech. engrg., 4, 153-177, (1974) · Zbl 0284.73048
[25] Hughes, T.J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Internat. J. numer. meths. engrg., 15, 1413-1418, (1980) · Zbl 0437.73053
[26] Rudnicki, J.W.; Rice, J.R., Conditions for the localization of deformation in pressure-sensitive dilatant materials, J. mech. phys. solids, 23, 371-394, (1975)
[27] M. Ortiz, An analytical study of the localized failure modes of concrete, Mech. Mat. (to appear).
[28] Belytschko, T.; Tsay, C.S., A stabilization procedure for the quadrilateral plate element with one-point quadrature, Internat. J. numer. meths. engrg., 19, 405-419, (1983) · Zbl 0502.73058
[29] Hughes, T.J.R.; Liu, W.K.; Brooks, A., Review of finite element analysis of incompressible viscous flows by the penalty function formulation, J. comput. phys., 30, 1-60, (1979) · Zbl 0412.76023
[30] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[31] Simo, J.C.; Hughes, T.J.R., On the variational foundations of assumed strain methods, ASME J. appl. mech., 53, 51-54, (1986) · Zbl 0592.73019
[32] Drucker, D.C.; Prager, W., Soil mechanics and plastic analysis or limit design, Quart. J. appl. math., 10, 157-165, (1952) · Zbl 0047.43202
[33] Hill, R., A general theory of uniqueness and stability in elastic-plastic solids, J. mech. phys. solids, 6, 236-249, (1958) · Zbl 0091.40301
[34] Raniecki, B.; Brunns, O.T., Bounds to bifurcation stresses in solids with non-associated plastic flow laws at finite strain, J. mech. phys. solids, 29, 153-172, (1981) · Zbl 0462.73027
[35] Zienkiewicz, O.C., The finite element method, (), 280-284 · Zbl 0435.73073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.