zbMATH — the first resource for mathematics

Bernstein algebras. (English) Zbl 0597.17014
It is shown that the decomposition of a Bernstein algebra with respect to an idempotent is nothing else but the Peirce decomposition which is known for power associative algebras with idempotent, especially for Jordan algebras with idempotent. Futhermore all idempotents of a Bernstein algebra are principal and primitive. For every Bernstein algebra a necessary and sufficient condition to be a Jordan algebra is given. All trivial Bernstein algebras are Jordan algebras, and beyond this, they are special Jordan algebras. Furthermore all normal Bernstein algebras are Jordan algebras.

17D92 Genetic algebras
17A60 Structure theory for nonassociative algebras
17C50 Jordan structures associated with other structures
Full Text: DOI
[1] M. T.Alcalde, C.Burgueño, A.Labra et A.Micali, Sur les algèbres de Bernstein. London Math. Soc. (submitted). · Zbl 0672.17010
[2] S. Bernstein, Démonstration mathématique de la loi d’hérédité de Mendel. Compt. Rend. Acad. Sci. Paris177, 528-531 (1923). · JFM 49.0368.03
[3] S. Bernstein, Principe de stationarité et généralisation de la loi de Mendel. Compt. Rend. Acad. Sci. Paris177, 581-584 (1923).
[4] S. Bernstein, Solution of a mathematical problem connected with the theory of heredity (Russian). Ann. Sci. de l’Ukraine1, 83-114 (1924). English Translation: Ann. Math. Statist.13, 53-61 (1942).
[5] H.Braun and M.Koecher, Jordan Algebren. Berlin-Heidelberg-New York 1966.
[6] G. H. Hardy, Mendelian proportions in a mixed population. Science28, 49-50 (1908). · doi:10.1126/science.28.706.49
[7] P. Holgate, Jordan algebras arising in population genetics. Proc. Edinburgh Math. Soc. (2)15, 291-294 (1967). · Zbl 0153.36304 · doi:10.1017/S0013091500011937
[8] P. Holgate, Genetic algebras satisfying Bernstein’s stationarity principle. J. London Math. Soc. (2)9, 613-623 (1975). · Zbl 0365.92025 · doi:10.1112/jlms/s2-9.4.613
[9] Ju. I. Ljubi?, Basic concepts and theorems of evolution genetics of free populations (Russian). Uspeki Mat. Nauk (5)26 (161), 51-116 (1971). English translation: Russian Math. Surveys (5)26, 51-123 (1971).
[10] Ju. I. Ljubi?, Bernstein algebras (Russian). Uspeki Mat. Nauk (6)32 (198), 261-262 (1977).
[11] Ju. I. Ljubi?, Algebraic methods in evolutionary genetics. Biom. J.20, 511-529 (1978). · Zbl 0401.92010 · doi:10.1002/bimj.4710200508
[12] G.Mendel, Versuche über Pflanzenhybriden. Verhandlungen d. naturf. Vereins in Brünn, IV. Band Abhandlungen 1865, 3-47 (1866).
[13] R. D.Schafer, An Introduction to nonassociative algebras. New York-London 1966. · Zbl 0145.25601
[14] W. Weinberg, Über den Nachweis der Vererbung beim Menschen. Jahreshefte Verein f. vaterl. Naturk. in Württemberg64, 368-382 (1908).
[15] A.Wörz-Busekros, Algebras in genetics. Lecture Notes in Biomathematics36, Berlin-Heidelberg-New York 1980. · Zbl 0431.92017
[16] A.Wörz-Busekros, Further remarks on Bernstein algebras. London Math. Soc. (submitted). · Zbl 0631.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.