zbMATH — the first resource for mathematics

Approximants de Padé simultanés de logarithmes. (Simultaneous Padé approximants of logarithms). (French) Zbl 0596.10033
By constructing explicit simultaneous Padé approximations the authors manage to give explicit lower bounds for certain linear forms in logarithms. Although the lower bound is extremely good in comparison with Baker’s estimates, the range of applicability is very limited. A typical example is: \[ | a+b \log (3/4)+c \log (5/4)| \quad \geq \quad \exp (-(88 \log H+196)), \] where a,b,c\(\in {\mathbb{Z}}\) not all zero, \(H=\max (| b|, | c|)\).
Reviewer: F.Beukers

11J81 Transcendence (general theory)
Full Text: DOI
[1] Alladi, K.; Robinson, M.L., Legendre polynomials and irrationality, J. reine angew. math., 318, 137-155, (1980) · Zbl 0425.10039
[2] Baker, A., ()
[3] Beukers, F., Legendre polynomials in irrationality proofs, Bull. austral. math. soc., 22, 431-438, (1980) · Zbl 0436.10016
[4] Cohen, H., Démonstration de l’irrationalité de ζ(3) (d’après R. apery), (), 9
[5] Cohen, H., Accélération de la convergence de certaines récurrences linéaires, (), 47
[6] Danilov, Rational approximations of some functions at rational points, Math. notes, 24, 741-744, (1979) · Zbl 0418.10033
[7] Galotchkin, A.I., Lower bounds of linear forms of values of G-functions, Mat. zametki, 18, No. 4, 541-552, (1975), [Russian]
[8] Reyssat, E., Approximation diophantienne et fonctions de Weierstrass, Thèse université pierre et marie Curie, (1982), Paris
[9] Rosser, J.B.; Schoenfeld, L., Approximate formulas for some functions of prime numbers, Illinois J. math., 6, 64-94, (1962) · Zbl 0122.05001
[10] Rosser, J.B.; Schoenfeld, L., Sharper bounds for the Chebyshev functions θ(x) and ψ(x), Math. comp., 29, 243-269, (1975) · Zbl 0295.10036
[11] Rhin, G., Sur l’approximation diophantienne simultanée de deux logarithmes de nombres rationnels, (), 247-258 · Zbl 0518.10039
[12] Waldschmidt, M., A lower bound for linear forms in logarithms, Acta arith., 37, 257-283, (1980) · Zbl 0357.10017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.