×

zbMATH — the first resource for mathematics

Probabilistic logic. (English) Zbl 0589.03007
Als Verallgemeinerung der klassischen Logik wird eine Logik mit Wahrheitswerten zwischen 0 und 1 vorgestellt. Techniken zur Berechnung der Wahrscheinlichkeit von Folgerungen und bedingten Wahrscheinlichkeiten, u.a. eine approximative Methode, werden angegeben.
Reviewer: E.Melis

MSC:
03B48 Probability and inductive logic
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lukasiewicz, J., Logical foundations of probability theory, (), 16-43
[2] Carnap, R., The two concepts of probability, (), 19-51
[3] Hempel, C.G., Studies in the logic of confirmation, (), 3-51
[4] Suppes, P., Probabilistic inference and the concept of total evidence, (), 49-65 · Zbl 0202.29603
[5] Dempster, A.P., A generalization of Bayesian inference, J. roy. statist. soc. B, 30, 205-247, (1968) · Zbl 0169.21301
[6] Shafer, G.A., ()
[7] Adams, E.W.; Levine, H.F., On the uncertainties transmitted from premises to conclusions in deductive inferences, Synthese, 30, 429-460, (1975) · Zbl 0307.02031
[8] Zadeh, L.A., Fuzzy logic and approximate reasoning, Synthese, 30, 407-428, (1975) · Zbl 0319.02016
[9] Shortliffe, E.H., Computer-based medical consultations: MYCIN, (1976), Elsevier New York
[10] Duda, R.O.; Hart, P.E.; Nilsson, N.J., Subjective Bayesian methods for rule-base inference systems, (), 1075-1082, reprinted in
[11] Lowrance, J.D.; Garvey, T.D., Evidential reasoning: a developing concept, (), 6-9
[12] Lowrance, J.D.; Garvey, T.D., Evidential reasoning: an implementation for multisensor integration, ()
[13] Lemmer, J.F.; Barth, S.W., Efficient minimum information updating for Bayesian inferencing in expert systems, (), 424-427
[14] Lemmer, J.F., Generalized Bayesian updating of incompletely specified distributions, () · Zbl 0545.62026
[15] Konolige, K.G.; Duda, R.O., A computer-based consultant for mineral exploration, (), (1982), a revision of Appendix D: Bayesian methods for updating probabilities
[16] Cheeseman, P., A method of computing generalized Bayesian probability values for expert systems, ()
[17] Halpern, J.Y.; Rabin, M., A logic to reason about likelihood, (), 310-319, (December 19, 1983)
[18] Grosof, B.N., An inequality paradigm for probabilistic knowledge, () · Zbl 0608.68076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.