×

zbMATH — the first resource for mathematics

Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. (English) Zbl 0587.76080
In a three-dimensional simulation higher-order derivative correlations, including skewness and flatness (or kurtosis) factors, are calculated for velocity and passive scalar fields and are compared with structures in the flow. Up to \(128^ 3\) grid points are used with periodic boundary conditions in all three directions to achieve \(R_{\lambda}\) to 82.9. The equations are forced to maintain steady-state turbulence and collect statistics. The scalar-derivative flatness is found to increase much faster with Reynolds number than the velocity-derivative flatness, and the velocity- and mixed-derivative skewnesses do not increase with Reynolds number. Separate exponents are found for the various fourth- order velocity-derivative correlations, with the vorticity-flatness exponent the largest. This does not support a major assumption of the lognormal and \(\beta\) models, but is consistent with some aspects of structural models of the small scales. Three-dimensional graphics show strong alignment between the vorticity, rate-of-strain, and scalar- gradient fields. The vorticity is concentrated in tubes with the scalar gradient and the largest principal rate of strain aligned perpendicular to the tubes. Velocity spectra, in Kolmogorov variables, collapse to a single curve and a short -5/3 spectral regime is observed.

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S002211207400190X · doi:10.1017/S002211207400190X
[2] DOI: 10.1017/S0022112080001309 · doi:10.1017/S0022112080001309
[3] DOI: 10.1017/S0022112080001929 · doi:10.1017/S0022112080001929
[4] DOI: 10.1017/S0022112078001287 · Zbl 0379.76048 · doi:10.1017/S0022112078001287
[5] DOI: 10.1017/S0022112056000317 · Zbl 0071.40603 · doi:10.1017/S0022112056000317
[6] DOI: 10.1017/S0022112059000106 · Zbl 0085.39702 · doi:10.1017/S0022112059000106
[7] DOI: 10.1017/S002211205900009X · Zbl 0085.39701 · doi:10.1017/S002211205900009X
[8] DOI: 10.1063/1.863289 · Zbl 0471.76063 · doi:10.1063/1.863289
[9] Batchelor, Proc. R. Soc. Lond. 213 pp 349– (1952)
[10] Siggia, J. Fluid Mech. 107 pp 375– (1981)
[11] DOI: 10.1017/S0022112080001371 · doi:10.1017/S0022112080001371
[12] DOI: 10.1017/S0022112078000336 · doi:10.1017/S0022112078000336
[13] Antonia, J. Fluid Mech. 119 pp 55– (1982)
[14] DOI: 10.1063/1.1693365 · Zbl 0225.76033 · doi:10.1063/1.1693365
[15] DOI: 10.1175/1520-0469(1979)036 2.0.CO;2 · doi:10.1175/1520-0469(1979)036 · doi:2.0.CO;2
[16] DOI: 10.1007/BF00119496 · doi:10.1007/BF00119496
[17] DOI: 10.1063/1.1761356 · doi:10.1063/1.1761356
[18] DOI: 10.1017/S0022112071001940 · Zbl 0229.76029 · doi:10.1017/S0022112071001940
[19] Nelkin, Phys. Rev. 17 pp 363– (1978)
[20] DOI: 10.1063/1.863407 · doi:10.1063/1.863407
[21] DOI: 10.1063/1.863957 · Zbl 0536.76034 · doi:10.1063/1.863957
[22] DOI: 10.1017/S0022112071002581 · doi:10.1017/S0022112071002581
[23] DOI: 10.1017/S0022112062000518 · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[24] Kolmogorov, C.R. Acad. Sci. UUSR 30 pp 301– (1941)
[25] DOI: 10.1063/1.1693192 · doi:10.1063/1.1693192
[26] DOI: 10.1017/S002211207800227X · Zbl 0401.76048 · doi:10.1017/S002211207800227X
[27] DOI: 10.1017/S0022112071001836 · doi:10.1017/S0022112071001836
[28] Herring, J. Fluid Mech. 118 pp 205– (1982)
[29] DOI: 10.1063/1.1691821 · doi:10.1063/1.1691821
[30] DOI: 10.1017/S0022112074001121 · doi:10.1017/S0022112074001121
[31] DOI: 10.1017/S0022112070000551 · doi:10.1017/S0022112070000551
[32] DOI: 10.1017/S0022112078002335 · doi:10.1017/S0022112078002335
[33] DOI: 10.1017/S0022112078001846 · Zbl 0395.76051 · doi:10.1017/S0022112078001846
[34] Vieillefosse, J. de Physique 43 pp 837– (1982)
[35] DOI: 10.1007/BF00241336 · doi:10.1007/BF00241336
[36] DOI: 10.1063/1.862965 · doi:10.1063/1.862965
[37] DOI: 10.1063/1.1706518 · Zbl 0112.42004 · doi:10.1063/1.1706518
[38] Van Atta, Izv. Atmos. Ocean Phys. 10 pp 712– (1974)
[39] DOI: 10.1063/1.1699986 · Zbl 0044.40601 · doi:10.1063/1.1699986
[40] DOI: 10.1063/1.1691966 · doi:10.1063/1.1691966
[41] DOI: 10.1175/1520-0469(1977)034 2.0.CO;2 · doi:10.1175/1520-0469(1977)034 · doi:2.0.CO;2
[42] DOI: 10.1017/S0022112078001986 · doi:10.1017/S0022112078001986
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.