×

zbMATH — the first resource for mathematics

Tree graph inequalities and critical behavior in percolation models. (English) Zbl 0586.60096
Various inequalities are derived and used for the study of the critical behavior in independent percolation models. In particular, we consider the critical exponent \(\gamma\) associated with the expected cluster size \(\chi\), and the structure of the n-side connection probabilities \(\tau =\tau_ n(X_ 1,...,X_ n)\). It is shown that quite generally \(\gamma\geq 1\). The upper critical dimension, above which \(\gamma\) attains the Bethe lattice value 1, is characterized both in terms of the geometry of incipient clusters and a diagramatic convergence condition.
For homogeneous d-dimensional lattices with \(\tau (x,y)=O(| x- y|^{-(d-2+\eta)}),\) at \(p=p_ c\), our criterion shows that \(\gamma =1\) if \(\eta >(6-d)/3\).

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B43 Percolation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Aizenman, Geometric Analysis of? 4 fields and Ising models. Parts I and II,Commun. Math. Phys. 86:1 (1982). · Zbl 0533.58034 · doi:10.1007/BF01205659
[2] J. Fröhlich, private communication.
[3] J. Fröhlich, On the triviality of ?? d 4 theories and the approach to the critical point ind > 4 dimensions,Nucl. Phys. B200[FS4]:281 (1982). · doi:10.1016/0550-3213(82)90088-8
[4] R. Durrett, Some general results concerning the critical exponents of percolation processes, UCLA preprint (1983). · Zbl 0548.60099
[5] P. D. Seymour and D. J. A. Welsh, Percolation probabilities on the square lattice,Ann. Discrete Math. 3:227 (1978); L. Russo, A note on percolation,Z. Wahrsch. Verw. Geb. 43:39 (1978). · Zbl 0405.60015 · doi:10.1016/S0167-5060(08)70509-0
[6] B. Simon, Correlation inequalities and the decay of correlations in ferromagnets,Commun. Math. Phys. 77:111 (1980). · doi:10.1007/BF01982711
[7] E. H. Lieb, A refinement of Simon’s correlation inequality,Commun. Math. Phys. 77:127 (1980). · doi:10.1007/BF01982712
[8] C. Newman and L. Schulman, One dimensional 1/|x-y|s percolation models:the existence of a transition fors ? 2, in preparation; M. Aizenman and C. Newman, Discontinuity of the percolation density in one-dimensional 1/|x-y|2 percolation models, in preparation.
[9] M. Aizenman and R. Graham, On the renormalized coupling constant and the susceptibility in ? 4 4 field theory and Ising model in four dimensions,Nucl. Phys. B225[FS9]:261 (1983). · doi:10.1016/0550-3213(83)90053-6
[10] J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breaking,Commun. Math. Phys. 50:79 (1976). · doi:10.1007/BF01608557
[11] G. Toulouse, Perspectives from the theory of phase transitions,Nuovo Cimento B23:234 (1974); A. B. Harris, T. C. Lubensky, W. K. Holcomb, and C. Dasgupta, Renormalization-group approach to percolation problems,Phys. Rev. Lett. 35:327 (1975).
[12] F. Fucito and G. Parisi, On the range of validity of the 6 -? expansion for percolation,J. Phys. A 14:L507 (1981). · doi:10.1088/0305-4470/14/12/006
[13] H. Kesten,Percolation Theory for Mathematicians (Birkhäuser, Boston, 1982). · Zbl 0522.60097
[14] M. Fisher, Critical temperatures of anisotropic Ising lattices, II. General upper bounds,Phys. Rev. 162:480 (1967). · doi:10.1103/PhysRev.162.480
[15] C. M. Fortuin and P. W. Kasteleyn, On the random-cluster model, I,Physica 57:536 (1972). · doi:10.1016/0031-8914(72)90045-6
[16] S. T. Klein and E. Shamir, An algorithmic method for studying percolation clusters, Stanford Univ. Dept. of Computer Science, Report No. STAN-CS-82-933 (1982).
[17] H. Kunz and B. Souillard, Essential singularity in the percolation model,Phys. Rev. Lett. 40:133 (1978). · doi:10.1103/PhysRevLett.40.133
[18] M. Aizenman, F. Delyon, and B. Souillard, Lower bounds on the cluster size distribution,J. Stat. Phys. 23:267(1980). · doi:10.1007/BF01011369
[19] F. Delyon and B. Souillard, private communication.
[20] A. D. Sokal, private communication.
[21] L. Gross, Decay of correlations in classical lattice models at high temperatures,Commun. Math. Phys. 68:9 (1979). · Zbl 0442.60097 · doi:10.1007/BF01562538
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.