×

zbMATH — the first resource for mathematics

Perturbations of geodesic flows on surfaces of constant negative curvature and their mixing properties. (English) Zbl 0585.58022
One parameter analytic Hamiltonian perturbations of the geodesic flow on a surface of constant negative curvature are considered and necessary and sufficient conditions for the canonical equivalence of the perturbed and nonperturbed flows are found.
Reviewer: G.Thorbergsson

MSC:
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53D25 Geodesic flows in symplectic geometry and contact geometry
53C22 Geodesics in global differential geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arnold, V., Avez, A.: Ergodic problems of classical mechanics. New York: Benjamin 1967 · Zbl 0715.70004
[2] Guillemin, V., Kazhdan, I.: On the cohomology of certain dynamical systems. Topology19, 301 (1980) and19, 291 (1980) · Zbl 0465.58027 · doi:10.1016/0040-9383(80)90015-4
[3] Livscic, A.: Some homology properties ofU-systems. Mat. Zametki10, 555 (1971)
[4] Gelfand, I., Fomin, S.: Geodesic flows on manifolds of constant negative curvature. Am. Math. Soc. Transl., Ser. 2, Vol. 1, 1965, p. 49 · Zbl 0127.05402
[5] Gelfand, I., Graev, M., Vilenkin, N.: Generalized functions, Vol. 5. New York: Academic Press 1966 · Zbl 0144.17202
[6] Gelfand, I., Graev, M., Piateckii-Shapiro, I.: Representation theory and automorphic functions. Philadelphia: Saunders 1969
[7] Poincaré, H.: Théorie des groupes Fuchsiens. Acta Math.1, 1 (1882) · JFM 14.0338.01 · doi:10.1007/BF02592124
[8] Ford, L.: Automorphic functions. New York: Chelsea 1951 · JFM 55.0810.04
[9] Arnold, V.: Proof of a theorem of A.N. Kolmogorov on the preservation of conditionally-periodic motions under a small perturbation of the hamiltonian. Russ. Math. Surv.18, 9 (1963) · Zbl 0129.16606 · doi:10.1070/RM1963v018n05ABEH004130
[10] Poshel, J.: Über differenzierbare Faserung invarianter Tori. Preprint, ETH-Zürich, 1981 Chierchia, L., Gallavott, G.: Smooth prime integrals for quasi-integrable Hamilton systems. Il Nuovo Cimento67B, 277 (1982)
[11] McKean, H., Trubowitz, E.: The spectral class of the quantum-mechanical harmonic oscillator. Commun. Math. Phys.82, 471 (1982) · Zbl 0493.34012 · doi:10.1007/BF01961236
[12] Gallavotti, G.: Perturbation theory for classical hamiltonian systems. In: Progress in Physics, PPhI, scaling and self similarity in physics. Fröhlich, J. (ed.). Boston: Birkhäuser 1983
[13] Bowen, R.: In: Equilibrium states and the theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Berlin, Heidelberg, New York: Springer 1975 · Zbl 0308.28010
[14] Rüssmann, H.: Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtlösung. Math. Ann.169, 55 (1967); The relationship between Rüssmann’s work and the present paper is made clearer if one reads also the paper which one of us (G.G.), A criterion of integrability for perturbed nonresonant harmonic oscillators. ?Wick ordering? of the perturbations in classical mechanics and invariance of the frequency spectrum. Commun. Math. Phys.87, 365 (1982), wrote after we completed most of this work and where Rüssmann’s theorem is derived along the lines of the present paper · Zbl 0143.10801 · doi:10.1007/BF01399531
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.