×

zbMATH — the first resource for mathematics

Efficient implementation of quadrilaterals with high coarse-mesh accuracy. (English) Zbl 0579.73075
See the preview in Zbl 0571.73078.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids
74S99 Numerical and other methods in solid mechanics
PDF BibTeX Cite
Full Text: DOI
References:
[1] Belytschko, T.; Ong, J.S.-J.; Liu, W.K.; Kennedy, J.M., Hourglass control in linear and nonlinear problems, Comput. meths. appl. mech. engrg., 43, 251-276, (1984) · Zbl 0522.73063
[2] Bergan, P.G., Finite elements based on energy orthogonal functions, Internat. J. numer. meths. engrg., 15, 1541-1555, (1980) · Zbl 0438.73063
[3] Cook, R.D., Avoidance of parasitic shear in plane element, J. struct. div. ASCE, 101, 1239-1253, (1975)
[4] Doherty, W.P.; Wilson, E.L.; Taylor, R.L., Stress analysis of axisymmetric solids utilizing higher order quadrilateral finite elements, ()
[5] Flanagan, D.P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Internat. J. numer. meths. engrg., 17, 679-706, (1981) · Zbl 0478.73049
[6] Fröier, M.; Nilsson, L.; Samuelsson, A., The rectangular plane stress element by turner, Pian and Wilson, Nternat. J. numer. meths. engrg., 8, 433-437, (1974)
[7] Herrmann, L.R., Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, Aiaa j., 3, 1896-1900, (1965)
[8] Hughes, T.J.R., Equivalence of finite elements for nearly incompressible elasticity, J. appl. mech., 44, 181-183, (1977)
[9] Hughes, T.J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Internat. J. numer. meths. engrg., 15, 1413-1418, (1980) · Zbl 0437.73053
[10] Key, S.W., A variational principle for incompressible and nearly incompressible anisotropic elasticity, Internat.J. solids and structures, 5, 951-964, (1969) · Zbl 0175.22101
[11] Kosloff, D.; Frazier, G.A., Treatment of hourglass pattern in low order finite element codes, Internat. J. numer. analyt. meths. geomech., 2, 57-72, (1978)
[12] Liu, W.K.; Ong, J.S.-J.; Uras, R.A., Finite element stabilization matrices—A unification approach, Comput. meths. appl. mech. engrg., 53, 1, 13-46, (1985) · Zbl 0553.73065
[13] Malkus, D.S.; Hughes, T.J.R., Mixed finite element methods—reduced and selective integration techniques: a unification of concepts, Comput. meths. appl. mech. engrg., 15, 63-81, (1978) · Zbl 0381.73075
[14] Nagtegaal, J.C.; Parks, D.M.; Rice, J.R., On numerically accurate finite element solutions in the fully plasticrange, Comput. meths. appl. mech. engrg., 4, 153-177, (1974) · Zbl 0284.73048
[15] Pian, T.H.H., Derivation of element stiffness matrices by assumed stress distributions, Aiaa j., 2, 1333-1336, (1964)
[16] Pian, T.H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Internat. J. numer. meths. engrg., 20, 1685-1695, (1984) · Zbl 0544.73095
[17] Rubinstein, R.; Punch, E.F.; Atluri, S.N., An analysis of, and remedies for, kinematic modes in hybrid-stress finite elements: selection of stable, invariant stress fields, Comput. meths. appl. mech. engrg., 38, 63-92, (1983) · Zbl 0519.73070
[18] Simo, J.C.; Taylor, R.L.; Pister, K.S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. meths. appl. mech. engrg., 51, 177-208, (1985) · Zbl 0554.73036
[19] Spilker, R.L.; Maskeri, S.M.; Kania, E., Plane isoparametric hybrid-stress elements: invariance and optimal sampling, Internat. J. numer. meths. engrg., 17, 1469-1496, (1981) · Zbl 0462.73050
[20] Stolarski, H.; Belytschko, T., Shear and membrane locking in curved C0 elements, Comput. meths. appl. mech. engrg., 41, 279-296, (1983) · Zbl 0509.73072
[21] Taylor, R.L.; Beresford, P.J.; Wilson, E.L., A non-conforming element for stress analysis, Internat. J. numer. meths. engrg., 10, 1211-1219, (1976) · Zbl 0338.73041
[22] Timoshenko, S.P.; Gere, J.M., Theory of elastic stability, (1961), McGraw-Hill New York
[23] Tong, P., An assumed stress hybrid finite element method for an incompressible and near-incompressible material, Internat. J. solids and structures, 5, 461-466, (1969) · Zbl 0167.52803
[24] Turner, M.J.; Clough, R.W.; Martin, H.C.; Topp, L.J., Stiffness and deflection analysis of complex structures, J. aeronaut. sci., 9, 805-823, (1956) · Zbl 0072.41003
[25] de Veubeke, B.Fraeijs, Displacement and equilibrium models in the finite element method, (), 145-197 · Zbl 0245.73031
[26] Wachspress, E.L., Incompatible quadrilateral basis functions, Internat. J. numer. meths. engrg., 12, 589-595, (1978) · Zbl 0382.65006
[27] Wilson, E.L.; Taylor, R.L.; Doherty, W.P.; Ghaboussi, J., Incompatible displacement models, (), 43-58
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.