zbMATH — the first resource for mathematics

The double-wedge algebra for quantum fields on Schwarzschild and Minkowski spacetimes. (English) Zbl 0578.46062
We consider the Klein-Gordon equation (\(m\geq 0\)) on the double Schwarzschild wedge of the Kruskal spacetime, and construct the Hartle–Hawking state \(\omega_ H\) as a thermal state relative to the Boulware quantization. We prove that, on the double wedge, \(\omega_ H\) is a pure state, and in the corresponding representation, the left- and right-wedge \(C^*\) algebras each have the Reeh–Schlieder property, while the corresponding von Neumann algebras are type \(III_ 1\) factors which are dual to (i.e. commutants of) each other. We discuss the extent to which these properties may generalize to non-quasi-free field theories. Pursuing the Rindler–Fulling–Unruh analogy with the Klein–Gordon equation \((m>0)\) in (\(d\)-dimensional) flat spacetime, we establish an explicit formula for the Minkowski vacuum on a spacelike double wedge as a thermal state relative to the Fulling quantization. We also treat the case \(d=2\), \(m=0\) of this formula since this is essential input for a paper with Dimock on scattering theory for the quantum Klein–Gordon equation on the Schwarzschild metric.
Note that the proof of Theorem 3.2 (but not its statement) contains an error. An erratum will appear on this and on the paragraph immediately following Theorem 3.2.
Reviewer: Bernard S. Kay

81T20 Quantum field theory on curved space or space-time backgrounds
46L60 Applications of selfadjoint operator algebras to physics
81T05 Axiomatic quantum field theory; operator algebras
83C47 Methods of quantum field theory in general relativity and gravitational theory
Full Text: DOI
[1] Hawking, S.W.: Commun. Math. Phys.43, 199-220 (1975) · Zbl 1378.83040 · doi:10.1007/BF02345020
[2] Fulling, S.A.: Nonuniqueness of canonical field quantization in Riemannian spacetime. Phys. Rev. D7, 2850-2862 (1973) · doi:10.1103/PhysRevD.7.2850
[3] Fulling, S.A.: Alternative vacuum states in static spacetimes with horizons. J. Phys. A10, 917-951 (1977) · doi:10.1088/0305-4470/10/6/014
[4] Davies, P.C.W.: Scalar particle production in Schwarzschild and Rindler metrics. J. Phys. A8, 609-616 (1975) · doi:10.1088/0305-4470/8/4/022
[5] Hartle, J.B., Hawking, S.W.: Path-integral derivation of black-hole radiance. Phys. Rev. D13, 2188-2203 (1976) · doi:10.1103/PhysRevD.13.2188
[6] Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D14, 2460-2473 (1976) · doi:10.1103/PhysRevD.14.2460
[7] Unruh, W.G.: Notes on block-hole evaporation. Phys. Rev. D14, 870-892 (1976) · doi:10.1103/PhysRevD.14.870
[8] Israel, W.: Thermo-field dynamics of black holes. Phys. Lett.57 A, 107-110 (1976)
[9] Boulware, D.G.: Quantum field theory in Schwarzschild and Rindler spaces. Phys. Rev. D11, 1404-1423 (1975) · doi:10.1103/PhysRevD.11.1404
[10] Birrell, N.D., Davies, P.C.W.: Quantum fields in curved space. Cambridge: Cambridge University Press 1982 · Zbl 0476.53017
[11] Sewell, G.L.: Relativity of temperature and the Hawking effect. Phys. Lett.79 A, 23-24 (1980); Quantum fields on manifolds: PCT and gravitationally induced thermal states. Ann. Phys. (NY)141, 201-224 (1982)
[12] Bisognano, J.J., Wichmann, E.H.: On the duality condition for a Hermitian scalar field. J. Math. Phys.16, 985-1007 (1975); On the duality condition for quantum fields.17, 303-321 (1976) · Zbl 0316.46062 · doi:10.1063/1.522605
[13] Kay, B.S.: Commun. Math. Phys.71, 29-46 (1980) · doi:10.1007/BF01230084
[14] Dimock, J.: Commun. Math. Phys.77, 219 (1980) · Zbl 0455.58030 · doi:10.1007/BF01269921
[15] Kay, B.S.: Springer Lecture Notes in Mathematics905, 272-295 (1982) · doi:10.1007/BFb0092443
[16] Dimock, J., Kay, B.S.: Classical and quantum scattering theory for linear scalar fields on the Schwarzschild metric (to appear) · Zbl 0628.53080
[17] Kay, B.S.: A uniqueness result for quasi-free KMS states. Helv. Phys. Acta (to appear)
[18] Kay, B.S.: Purification of KMS states. Helv. Phys. Acta (to appear)
[19] Slawny, J.: Commun. Math. Phys.24, 151-170 (1972) · Zbl 0225.46068 · doi:10.1007/BF01878451
[20] Kay, B.S.: A uniqueness result in the Segal-Weinless approach to linear Bose fields. J. Math. Phys.20, 1712-1713 (1979) · doi:10.1063/1.524253
[21] Weinless, M.: J. Funct. Anal.4, 350 (1969) · Zbl 0205.57504 · doi:10.1016/0022-1236(69)90004-4
[22] Connes, A.: Ann. Sci. Ec. Norm. Sup. 4e série6, 133 (1973)
[23] Hawking, S., Ellis, G.: The large scale structure of spacetime. Cambridge: Cambridge University Press 1973 · Zbl 0265.53054
[24] Geroch, R.: Domain of dependence. J. Math. Phys.11, 437-449 (1970) · Zbl 0189.27602 · doi:10.1063/1.1665157
[25] Leray, J.: Hyperbolic partial differential equations. Princeton Lecture Notes. Princeton University 1952 (mimeographed)
[26] Choquet-Bruhat, Y.: Hyperbolic partial differential equations on a manifold. In: Battelle rencontres. de Witt, B.S., Wheeler, J.A., eds. New York: Benjamin 1967 · Zbl 0169.43202
[27] Kay, B.S.: Commun. Math. Phys.62, 55-70 (1978) · doi:10.1007/BF01940330
[28] Kay, B.S.: Springer Lecture Notes in Physics116, 241-243 (1980) · doi:10.1007/3-540-09964-6_328
[29] Chernoff, P.R.: J. Funct. Anal.12, 401-414 (1973) · Zbl 0263.35066 · doi:10.1016/0022-1236(73)90003-7
[30] Reed, M., Simon, B.: Methods of modern mathematical physics. Vol. III: Scattering theory. New York, London: Academic Press 1979 · Zbl 0405.47007
[31] Candelas, P., Raine, D.: Quantum field theory on incomplete manifolds. J. Math. Phys.17, 2101-2112 (1976) · doi:10.1063/1.522850
[32] Isham, C.J.: Ann. N.Y. Acad. Sci.302, 114-157 (1977) · doi:10.1111/j.1749-6632.1977.tb37043.x
[33] Takahashi, Y., Umezawa, H.: Collect. Phenom.2, 55-80 (1975)
[34] Isham, C.J.: Private communication (1976)
[35] Haag, R., Narnhofer, H., Stein, U.: Commun. Math. Phys.94, 219-238 (1984) · doi:10.1007/BF01209302
[36] Reeh, H., Schlieder, S.: Bemerkungen zur Unitäräquivalenz von Lorentz invarianten Feldern. Nuovo Cimento22, 1051-1068 (1961) · Zbl 0101.22402 · doi:10.1007/BF02787889
[37] Streater, R.F., Wightman, A.S.: PCT spin, statistics and all that. New York: Benjamin 1964 · Zbl 0135.44305
[38] Leyland, P., Roberts, J., Testard, D.: Duality for quantum free fields. Marseille preprint (1978)
[39] Wightman, A.S.: Introduction to some aspects of the relativistic dynamics of quantum fields. Cargèse lectures in theoretical physics: high energy electromagnetic interactions and field theory, Lévy, M., ed. (1964). New York: Gordon and Breach 1967
[40] Streater, R.F., Wilde, I.: Fermion states of a boson field. Nucl. Phys. B24, 561-575 (1970) · doi:10.1016/0550-3213(70)90445-1
[41] Dimock, J., Kay, B.S.: Classical wave operators and asymptotic quantum field operators on curved spacetimes. Ann. Inst. Henri Poincaré37, 93-114 (1982) · Zbl 0539.35063
[42] Dimock, J.: Scattering for the wave-equation on the Schwarzschild metric. General Relativity and Gravitation (to appear) · Zbl 0618.35088
[43] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. I: Functional analysis. New York, London: Academic Press 1972 · Zbl 0242.46001
[44] Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966 · Zbl 0148.12601
[45] Fulling, S., Ruijsenaars, S.: TexasA andM mathematics preprint (unpublished)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.