zbMATH — the first resource for mathematics

Unilateral buckling of thin elastic plates by the boundary integral equation method. (English) Zbl 0577.73084
Summary: The unilateral buckling of thin elastic plates, according to Kirchhoff’s theory, is studied by using a boundary integral method. A representation for the second member of the equation is given. In the matrix formulation, boundary unknowns are eliminated; therefore, the unilateral buckling problem reduces to compute the eigenvalues and the eigenvectors of a matrix depending on the contact zone with the rigid foundation. An iterative process allows this zone and the buckling load to be computed. The capacities of the proposed method are illustrated by four examples.

74S30 Other numerical methods in solid mechanics (MSC2010)
74G60 Bifurcation and buckling
74K20 Plates
74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
Full Text: DOI
[1] Théorie de la stabilité élastique, Librairie polytechnique Beranger, Paris, 1947.
[2] and , Buckling of Bars, Plates and Shells, McGraw-Hill Kogakusha, Tokyo, 1975. · Zbl 0352.73040
[3] ’Advances and trends in plate buckling research’, Research in Structural and Solid Mechanics, N.A.S.A., 1982.
[4] ’Etude du flambage des plaques minces par la méthode des équations intégrates de frontière’, IIIe Congrès International sur les Méthodes Numériques Pluralis, Paris, 1983, pp. 723-729.
[5] Cimetiere, Comptes-rendus Acad. Sci. Paris, ser. B 290 pp 337– (1980)
[6] Cimetiere, J. Mécanique 19 pp 183– (1980)
[7] ’Vibration of plates’, N.A.S.A. SP-160, U.S. Govt Printing Office (1969).
[8] Bezine, Mech. Res. Comm. 5 pp 197– (1978)
[9] Bezine, Int. j. numer. methods eng. 17 pp 1647– (1981)
[10] ’Application de la méthode des équations intégrales è la résolution des problèmes statiques dynamiques stationnaires ou transitoires de flexion de plaques minces-Extension è des problèmes de mécanique des fluides pour des écoulements visqueux en régime de Stokes’, Thèse de Docteur ès Sciences Physiques, Poitiers (Octobre 1982).
[11] Bezine, Mech. Res. Comm. 7 pp 141– (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.