×

zbMATH — the first resource for mathematics

N-dimensional spinors: Their properties in terms of finite groups. (English) Zbl 0575.15012
The finite multiplicative group is used for studying n-dimensional spinors and different properties of a Clifford algebra. An explicit algorithm for associating this multiplicative group (which is one of five canonical forms) to a particular algebra is developed. The representations of this group are examined and applied to some physical problems.
Reviewer: P.Rudra

MSC:
15A66 Clifford algebras, spinors
53C27 Spin and Spin\({}^c\) geometry
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.2307/2369379 · JFM 10.0297.02 · doi:10.2307/2369379
[2] DOI: 10.1103/PhysRev.97.810 · Zbl 0066.44003 · doi:10.1103/PhysRev.97.810
[3] DOI: 10.2307/2371218 · Zbl 0011.24401 · doi:10.2307/2371218
[4] DOI: 10.1016/0022-247X(70)90114-9 · Zbl 0203.28002 · doi:10.1016/0022-247X(70)90114-9
[5] DOI: 10.1063/1.524893 · Zbl 0459.15017 · doi:10.1063/1.524893
[6] DOI: 10.1063/1.525192 · Zbl 0481.15013 · doi:10.1063/1.525192
[7] DOI: 10.1112/plms/s3-32.3.403 · Zbl 0336.20007 · doi:10.1112/plms/s3-32.3.403
[8] Schur I., J. Reine Angew. Math. 139 pp 155– (1911)
[9] DOI: 10.1016/0550-3213(84)90366-3 · doi:10.1016/0550-3213(84)90366-3
[10] DOI: 10.1016/0370-2693(82)90524-X · doi:10.1016/0370-2693(82)90524-X
[11] Wall C. T. C., J. Reine Angew. Math. 213 pp 187– (1964)
[12] DOI: 10.1007/BF00726946 · doi:10.1007/BF00726946
[13] Blackburn N., J. Reine Angew. Math. 309 pp 100– (1979)
[14] DOI: 10.1088/0305-4470/17/15/010 · Zbl 0563.22013 · doi:10.1088/0305-4470/17/15/010
[15] DOI: 10.1007/BF01646028 · doi:10.1007/BF01646028
[16] DOI: 10.1063/1.1703856 · Zbl 0109.21202 · doi:10.1063/1.1703856
[17] DOI: 10.1016/0550-3213(77)90206-1 · doi:10.1016/0550-3213(77)90206-1
[18] DOI: 10.1103/PhysRev.97.810 · Zbl 0066.44003 · doi:10.1103/PhysRev.97.810
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.