zbMATH — the first resource for mathematics

On the regularity of the pressure of weak solutions of Navier-Stokes equations. (English) Zbl 0574.35070
The aim of this paper is to prove the regularity property \(p\in L^{5/3}\) for the pressure of weak solutions of Navier-Stokes equations in a bounded or an exterior domain. This result was known only for the whole space. The method to prove this property uses a new potential theoretical estimate of the linearized equation with different integration exponents in space and time. Using this regularity property of the pressure, it is possible to prove the existence of a weak solution of Navier-Stokes equations which is smooth for large \(| x|\) in an exterior domain. This result has been proved by L. Caffarelli, R. Kohn and L.Nirenberg [Commun. Pure Appl. Math. 35, 771-831 (1982; Zbl 0509.35067)] for the whole space.

35Q30 Navier-Stokes equations
35D10 Regularity of generalized solutions of PDE (MSC2000)
35D05 Existence of generalized solutions of PDE (MSC2000)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI
[1] M. E. Bogovski, Solution of the first boundary value problem for the equation of continuity of an incompressible medium. Soviet Math. Dokl.20, 1094-1098 (1979). · Zbl 0499.35022
[2] L. Caefarelli, R. Kohn andL. Nirenberg, Partial Regularity of Suitable Weak Solutions of the Navier-Stokes Equations. Comm. Pure Appl. Math.35, 771-831 (1982). · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[3] W.Erig, Die Gleichungen von Stokes und die Bogovski-Formel. Diplomarbeit, Universit?t-Gesamthochschule Paderborn 1982.
[4] D. Fujiwara andH. Morimoto, AnL r -Theorem of the Helmholtz-decomposition of vector fields. J. Fac. Sci. Univ. Tokyo24, 685-699 (1977). · Zbl 0386.35038
[5] Y. Giga, The Stokes operator inL r spaces. Proc. Japan Acad.57, 85-89 (1981). · Zbl 0471.35069 · doi:10.3792/pjaa.57.85
[6] Y. Giga, Analyticity of the semigroup generated by the Stokes operator inL r spaces. Math. Z.178, 297-329 (1981). · Zbl 0461.47019 · doi:10.1007/BF01214869
[7] T. Miyakawa, On nonstationary solutions of the Navier-Stokes equations in an exterior domain. Hiroshima Math. J.12, 115-140 (1982). · Zbl 0486.35067
[8] H. Sohr, Zur Regularit?tstheorie der instation?ren Gleichungen von Navier-Stokes. Math. Z.184, 359-375 (1983). · Zbl 0506.35084 · doi:10.1007/BF01163510
[9] H. Sohr, Optimale lokale Existenzs?tze f?r die Gleichungen von Navier-Stokes. Math. Ann.267, 107-123 (1984). · Zbl 0552.35059 · doi:10.1007/BF01458474
[10] H. Sohr andW. von Wahl, A New Proof of Leray’s Structure Theorem and the Smoothness of Weak Solutions of Navier-Stokes Equations for Large |x|. Bayreuth. Math. Sehr.20, 153-204 (1985). · Zbl 0681.35073
[11] V. A. Solonnikov, Estimates for Solutions of Nonstationary Navier-Stokes Equations. J. Soviet Math.8, 467-529 (1977). · Zbl 0404.35081 · doi:10.1007/BF01084616
[12] W. von Wahl, Regularit?tsfragen f?r die instation?ren Navier-Stokesschen Gleichungen in h?heren Dimensionen. J. Math. Soc. Japan32, 263-283 (1980). · Zbl 0456.35073 · doi:10.2969/jmsj/03220263
[13] W. von Wahl, The Equationu? + A(t)u=fin a Hilbert Space andL p -Estimates for Parabolic Equations. J. London Math. Soc.25, 483-497 (1982). · Zbl 0493.35050 · doi:10.1112/jlms/s2-25.3.483
[14] W. von Wahl, ?ber das Verhalten f?rt?0 der L?sungen nichtlinearer parabolischer Gleichungen, insbesondere der Gleichungen von Navier-Stokes. Bayreuth. Math. Schr.16, 151-277 (1984). · Zbl 0554.35056
[15] W. von Wahl, Klassische L?sbarkeit im Gro?en f?r nichtlineare parabolische Systeme und das Verhalten der L?sungen f?rt??. Nachr. Akad. Wiss. G?ttingen, 5. Akademie der Wissenschaften, G?ttingen 1981, 131-177 (1981).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.