×

zbMATH — the first resource for mathematics

The numerical simulation of two-dimensional fluid flow with strong shocks. (English) Zbl 0573.76057
The paper presents a comparison of numerical methods for simulating hydrodynamics - two-dimensional fluid flow with strong shocks. A substantial entropy production is defined as ”strong shocks”. In the case of shocks in air, Mach numbers of three and greater are used in the paper. The flow discontinuities that result due to strong shocks are treated using three approaches - artificial viscosity, blending of low- and high-order-accurate fluxes, and the use of nonlinear solutions to Riemann’s problem. Three test problems are used to illustrate the advantages and disadvantages of each approach. The paper restricts itself to the case of uniform, square computational zones in Cartesian coordinates.
Reviewer: S.Sankar

MSC:
76L05 Shock waves and blast waves in fluid mechanics
76M99 Basic methods in fluid mechanics
Software:
KRAKEN
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Von Neumann, J.; Richtmyer, R.D., J. appl. phys., 21, 232, (1950)
[2] Godunov, S.K., Mat. sb., 47, 271, (1959)
[3] Courant, R.; Friedrichs, K.O., Supersonic flow and shock waves, (1948), Interscience New York · Zbl 0041.11302
[4] Van Leer, B., J. comput. phys., 23, 276, (1977)
[5] Van Leer, B., J. comput. phys., 32, 101, (1979)
[6] Van Leer, B.; Woodward, P.R., ()
[7] Woodward, P.R.; Collela, P., (), 434
[8] \scP. Colella, A direct-Eulerian MUSCL scheme for gas dynamics, SIAM J. Sci. Statist. Comput., in press. · Zbl 0562.76072
[9] Colella, P.; Woodward, P.R., The piecewise parabolic method (PPM) for gas-dynamcal simulations, J. comput. phys., 54, (1984) · Zbl 0531.76082
[10] Glimm, J., Comm. pure appl. math., 18, 697, (1965)
[11] Chorin, A.J., J. comput. phys., 22, 517, (1976)
[12] Sod, G.A., J. comput. phys., 27, 1, (1978)
[13] Colella, P., SIAM J. sci. statist. comput., 3, 76, (1982)
[14] Chorin, A.J., J. comput. phys., 25, 253, (1977)
[15] Teng, Z.-H.; Liu, T.-P.; Chorin, A.J., SIAM J. appl. math., 42, 964, (1982)
[16] \scT. Axelrod, private communication.
[17] Noh, W.F.; Gee, M.; Kramer, G., Lawrence livermore national laboratory report UCID-18515, (1979)
[18] Gropp, W.D., SIAM J. sci. statist. comput., 1, 191, (1980)
[19] \scJ. Bolstad. “An Adaptive Finite Difference Method for Hyperbolic Systems in One Space Dimension,” Ph. D. thesis. Stanford University, in preparation.
[20] \scM. Berger and J. Oliger, “Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,” submitted. · Zbl 0536.65071
[21] Woodward, P.R., Trade-offs in designing explicit hydrodynamics schemes for vector computers, ()
[22] Eggleton, P., Mont. not. roy. astron, soc., 151, 351, (1971)
[23] Castor, J.I.; Davis, C.G.; Davison, D.K., Dynamical zoning within a Lagrangian mesh by use of DYN, a stellar pulsation code, ()
[24] Winkler, K.-H.A., ()
[25] Tscharnuter, W.M.; Winkler, K.-H.A., Comput. phys. comm., 18, 171, (1979)
[26] Winkler, K.-H.A.; Newman, M.J., Astrophys. J., 238, 311, (1980)
[27] Dwyer, H.A.; Raiszadeh, F.; Otey, G., (), 170
[28] \scK. Miller and R. Miller, SIAM J. Numer. Anal., in press.
[29] Gelinas, R.J.; Doss, S.K.; Miller, K., J. comput. phys., 40, 202, (1981)
[30] Debar, R., Fundamentals of the KRAKEN code, ()
[31] Harten, A.; Zwas, G., J. comput. phys., 6, 568, (1972)
[32] Boris, J.P.; Book, D.L., J. comput. phys., 11, 38, (1973)
[33] Boris, J.P., Flux-corrected transport modules for solving generalized continuity equations, N.R.L. memorandum report 3237, (1976)
[34] Zalesak, S.T., J. comput. phys., 31, 335, (1979)
[35] Harten, A., The method of articial compression, ()
[36] \scP. Colella, P. R. Woodward, and S. Zalesak, in preparation.
[37] Colella, P.; Glaz, H., Efficient algorithms for the solution of the Riemann problem for real gases, Lawrence Berkeley laboratory report LBL-15776, (1983)
[38] Emery, A.E., J. comput. phys., 2, 306, (1968)
[39] Ben-Dor, G.; Glass, I.I., J. fluid mech., 92, 459, (1979)
[40] Book, D.; Boris, J.; Kuhl, A.; Oran, E.; Picone, M.; Zalesak, S., (), 84
[41] Fursenko, A.A.; Golovizin, V.P.; Komissaruk, V.A.; Mende, N.P.; Zhmakin, A.I., Leningrad physical-technical institute report no. 709, (1981)
[42] Birkhoff, G.; MacDougall, D.P.; Pugh, E.M.; Taylor, G., J. appl. phys., 19, 563, (1948)
[43] MacCormack, R., ()
[44] Richtmyer, R.D.; Morton, K.W., Difference methods for initial value problems, (1967), Interscience New York · Zbl 0155.47502
[45] Lapidus, A., J. comput. phys., 2, 154, (1967)
[46] Sutcliffe, W.G., BBC hydrodynamics, E. O. Lawrence livermore national laboratory report UCID-17013, (1973)
[47] Strang, G., SIAM J. numer. anal., 5, 506, (1968)
[48] Ikeda, T.; Nakagawa, T., Math. comp., 33, 1157, (1979)
[49] Godunov, S.K.; Zabrodyn, A.W.; Prokopov, G.P., Zh. vycisl. mat. fiz., 1, 1020, (1961)
[50] \scS. Hancock, private communication.
[51] van Leer, B., On the relation between the upwind differencing schemes of Godunov, engquist-osher, and roe, () · Zbl 0547.65065
[52] Osher, S.; Solomon, F., Math. comp., 38, 339, (1982)
[53] Harten, A.; Lax, P.D., SIAM J. numer. anal., 18, 289, (1981)
[54] Roe, P.L., J. comput. phys., 43, 357, (1981)
[55] Saltzman, J., ()
[56] \(P. Colella\), “Approximate Solution of the Riemann Problem for Real Gases,” Lawrence Berkeley Laboratory Report LBL-14442. · Zbl 0581.76079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.