×

Finite element methods for nonlinear advection. (English) Zbl 0573.76005

The Taylor-Galerkin method for the temporal and spatial discretization of mixed initial boundary value problems is applied to derive numerical schemes for solving a single scalar conservation-law equation. The discretization in time is performed before the spatial approximation by introducing second-order and third-order accurate generalizations of the standard two-level Euler scheme with the help of Taylor series expansions in the time step. The equations in weak form are then spatially discretized by means of the conventional Galerkin finite element method to obtain a new class of parameter-free, one-step, linearly implicit schemes for the solution of nonlinear hyperbolic problems. Numerical results for the so-called inviscid Burgers’ equation in one and two dimensions are presented to illustrate the properties of the proposed Taylor-Galerkin schemes.

MSC:

76M99 Basic methods in fluid mechanics

Software:

HLLE
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Gresho, P.M.; Lee, R.L.; Sani, R., Advection-dominated flows, with emphasis on the consequences of mass lumping, (), 335-350 · Zbl 0442.76067
[2] Baker, A.J.; Soliman, M.O., Utility of a finite element solution algorithm for initial-value problems, J. comput. phys., 32, 289-324, (1979) · Zbl 0417.65054
[3] Jamet, P.; Bonnerot, R., Numerical solution to the Eulerian equations of compressible flow by a lumping finite element method which follows the free boundary and the interfaces, J. comput. phys., 18, 21-45, (1975) · Zbl 0303.76030
[4] Arminjon, P.; Beauchamp, C., Numerical solution of Burgers’ equations in two space dimensions, Comput. meths. appl. mech. engrg., 19, 351-365, (1979) · Zbl 0414.73067
[5] Nguyen, H.; Reynen, J., A space-time least-square finite element scheme for advection-diffusion equations, Comput. meths. appl. mech. engrg., 42, 331-342, (1984) · Zbl 0517.76089
[6] Strang, G.; Fix, G.J., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
[7] Morton, K.W.; Parrott, A.K., Generalized Galerkin methods for first order hyperbolic equations, J. comput. phys., 36, 249-270, (1980) · Zbl 0458.65098
[8] Hughes, T.J.R.; Brooks, A., A multi-dimensional upwind scheme with no crosswind diffusion, (), 19-35 · Zbl 0423.76067
[9] Brooks, A.N., A Petrov-Galerkin finite element formulation for convection dominated flows, ()
[10] Hughes, T.J.R.; Brooks, A., A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: application to the streamline-upwind procedure, (), 47-65
[11] Baker, A.J.; Soliman, M.O., A finite element algorithm for computational fluid dynamics, Aiaa j., 21, 816-827, (1983) · Zbl 0513.76069
[12] Lax, P.D.; Wendroff, B., Systems of conservation laws, Comm. pure appl. math., 13, 217-237, (1960) · Zbl 0152.44802
[13] Lax, P.D.; Wendroff, B., Difference schemes for hyperbolic equations with high-order of accuracy, Comm. pure appl. math., 17, 381, (1964) · Zbl 0233.65050
[14] Richtmyer, R.D.; Morton, K.W., Difference methods for initial-value problems, (1967), Interscience New York · Zbl 0155.47502
[15] Arbarbanel, S.; Gottlieb, D.; Turkel, E., Difference schemes with fourth order accuracy for hyperbolic equations, SIAM J. appl. math., 29, 315-329, (1975) · Zbl 0325.65041
[16] Henrici, P., Discrete variable methods in ordinary differential equations, (1962), Wiley New York · Zbl 0112.34901
[17] Lambert, J.D., Computational methods for ordinary differential equations, (1973), Wiley New York · Zbl 0258.65069
[18] Donea, J., A. Taylor-Galerkin method for convective transport problems, Internat. J. numer. meths. engrg., 20, 101-120, (1984) · Zbl 0524.65071
[19] Donea, J.; Giuliani, S.; Laval, H.; Quartapelle, L., Time-accurate solution of advection-diffusion problems by finite elements, Comput. meths. appl. mech. engrg., 45, 134-145, (1984) · Zbl 0514.76083
[20] Hirt, C.W., Heuristic stability theory for finite-difference equations, J. comput. phys., 2, 339-355, (1968) · Zbl 0187.12101
[21] Gazdag, J., Numerical convective schemes based on accurate computation of space derivatives, J. comput. phys., 13, 100-113, (1973) · Zbl 0267.65074
[22] Argyris, J.H.; Vaz, L.E.; William, K.J., Higher-order methods for transient diffusion analysis, Comput. meths. appl. mech. engrg., 12, 243-278, (1977) · Zbl 0365.65061
[23] Khaliq, A.Q.M.; Twizell, E.H., Backward difference replacements of the space derivative in first-order hyperbolic equations, Comput. meths. appl. mech. engrg., 43, 45-56, (1984) · Zbl 0522.65062
[24] Leith, C.E., Numerical simulation of the Earth’s atmosphere, (), 1-28 · Zbl 0204.25001
[25] Roache, P.J., Computational fluid dynamics, (1982), Hermosa Albuquerque, NM
[26] Beam, R.M.; Warming, R.F., An implicit finite-difference algorithm for hyperbolic systems in conservationlaw form, J. comput. phys., 22, 87-110, (1976) · Zbl 0336.76021
[27] Dukowicz, J.K.; Ramshaw, J.D., Tensor viscosity method for convection in numerical fluid dynamics, J. comput. phys., 32, 71-79, (1979) · Zbl 0408.76001
[28] Sanz-Serna, J.M., An explicit finite difference scheme with exact conservation properties, J. comput. phys., 47, 199, (1982) · Zbl 0484.65062
[29] Spradley, L.W.; Stalnaker, J.F.; Ratliff, A.W., Computation of three-dimensional viscous flows with the Navier-Stokes equations, AIAA-80-1348, ()
[30] Cullen, M.J.P.; Morton, K.W., Analysis of evolutionary error in finite element and other methods, J. comput. phys., 34, 245-267, (1980) · Zbl 0477.65064
[31] Christie, I.; Griffiths, D.F.; Mitchell, A.R.; Sanz-Serna, J.M., Product approximation for nonlinear problems in the finite element method, IMA J. numer. anal., 1, 253-266, (1981) · Zbl 0469.65072
[32] Hughes, T.J.R.; Tezduyar, T.E.; Brooks, A.N., A Petrov-Galerkin finite element formulation for systems of conservation laws with special reference to the compressible Euler equations, () · Zbl 0505.76077
[33] Fletcher, C.A.J., A comparison of finite element and finite difference solutions of the one and two-dimensional Burgers’ equations, J. comput. phys., 51, 159-188, (1953) · Zbl 0525.65077
[34] Cushman, J.H.; Huang, C., General hyperbolic difference formulas for linear and quasilinear hyperbolic equations, Internat. J. numer. meths. fluids, 2, 387-405, (1982) · Zbl 0496.76019
[35] F. Angrand and J. Dervieux, Internat. J. Numer. Meths. Fluids, to appear.
[36] Roache, P.J., On artificial viscosity, J. comput. phys., 10, 169, (1972) · Zbl 0247.76035
[37] MacCormack, R.W., The effect of viscosity in hypervelocity impact catering, AIAA paper 69-354, (1969)
[38] Rusanov, V.V., On difference schemes of third order accuracy for nonlinear hyperbolic systems, J. comput. phys., 5, 507-516, (1970) · Zbl 0217.21703
[39] Burstein, S.Z.; Mirin, A.A., Third order difference methods for hyperbolic equations, J. comput. phys., 5, 547-571, (1970) · Zbl 0223.65053
[40] Harten, A.; Tal-Ezer, H., On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws: I. nonstiff strongly dynamic problems, Math. comput., 36, 353-373, (1981) · Zbl 0468.65051
[41] Harten, A.; Tal-Ezer, H., On a fourth order accurate implicit finite difference scheme for hyperbolic conservation laws: II. five-point schemes, J. comput. phys., 41, 329-356, (1981) · Zbl 0468.65052
[42] Donea, J.; Giuliani, S.; Halleux, J.P., Taylor-Galerkin methods for the wave equation, () · Zbl 0575.65113
[43] Selmin, V.; Donea, J.; Quartapelle, L., Taylor-Galerkin method for nonlinear hyperbolic equations, () · Zbl 0661.76068
[44] Harten, A.; Lax, P.D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM J. appl. math., 25, 35-61, (1983) · Zbl 0565.65051
[45] Woodward, P.; Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. comput. phys., 54, 115-173, (1984) · Zbl 0573.76057
[46] Warming, R.F.; Hyett, B.H., The modified equation approach to the stability and accuracy analysis of finite-difference methods, J. comput. phys., 14, 159-179, (1974) · Zbl 0291.65023
[47] Fix, G.J., Finite element models for Ocean circulation problems, SIAM J. appl. math., 29, 371-387, (1975) · Zbl 0329.76092
[48] Swartz, B.; Wendroff, B., Generalized finite difference schemes, Math. comput., 23, 37-49, (1969) · Zbl 0184.38502
[49] Turkel, E., Phase error and stability of second order methods for hyperbolic problems. I, J. comput. phys., 15, 226-250, (1974) · Zbl 0285.65057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.