×

Levinson formula for perturbed Hill operator. (English. Russian original) Zbl 0573.34022

Theor. Math. Phys. 62, 130-140 (1985); translation from Teor. Mat. Fiz. 62, No. 2, 196-209 (1985).
A ”Levinson series”, generalizing the well-known Levinson formula to the case when there is a periodic potential, is obtained for a one- dimensional perturbed Hill operator. Several relevant lemmas are proved.
Reviewer: V.C.Boffi

MSC:

34L99 Ordinary differential operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] N. E. Firsova, Zap. Nauchn. Semin. LOMI,51, 183 (1975).
[2] N. E. Firsova, ?Trace formula for a perturbed Schrödinger operator with periodic potential,? Diploma Thesis [in Russian], Leningrad State University (1971).
[3] N. E. Firsova, Problemy Matem. Fiziki (LGU) No. 7, 162 (1974).
[4] N. E. Firsova, Problemy Matem. Fiziki (LGU), No. 8, 158 (1976).
[5] M. Sh. Birman, Mat. Sb.,55, 125 (1961).
[6] F. S. Rofe-Beketov, Dokl. Akad. Nauk SSSR,156, 515 (1964).
[7] V. A. Marchenko and I. V. Ostrovskii, Mat. Sb.,97, 540 (1975).
[8] V. A. Zheludev, Problemy Matem. Fiziki (LGU), No. 4, 61 (1970).
[9] F. S. Rofe-Beketov, Matem. Fizika i Funkts. Analiz (Khar’kov), No. 19, 158 (1973).
[10] N. E. Firsova, Matem. Zametki,36, No. 5 (1984).
[11] N. E. Firsova, Matem. Zametki,18, 831 (1975).
[12] R. G. Newton, J. Math. Phys.,21, 493 (1980). · Zbl 0446.34029
[13] R. G. Newton, ?Inverse scattering by a local impurity in a periodic potential in one dimension,? Preprint IN 47405. Physics Department, Indiana University Bloomington (1982).
[14] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Vol. 2, Clarendon Press, Oxford (1948). · Zbl 0097.27601
[15] N. E. Firsova, Vestn. Leningr. Univ. Ser. Fiz., No. 10/2, 13 (1979).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.