×

Leading large order asymptotics for \((\phi ^ 4)_ 2\) perturbation theory. (English) Zbl 0568.46055

Let \(B(t)=\sum^{\infty}_{k=0}a_ kt^ k/k!\) for \(t\) in a disk of non-zero radius \(R\) be a representation of the Borel transform, \[ S(\phi)=\int_{\mathbb R^ 2}[(\nabla \phi)^ 2(x)+\phi^ 2(x)]\,d^ 2x- \ell n\int_{\mathbb R^ 2}\phi^ 4(x)\,d^ 2x \] where \(\phi \in W^{1,2}(\mathbb R^ 2)\). The main result of the paper is as follows:
Let \(R\) be a radius of convergence of the Borel transform. Then \[ R^{-1}=\lim_{k\to \infty}| a_ k/k!|^{1/k}=\exp [-\inf_{\phi \in W^{1,2}(\mathbb R^ 2)}S(\phi)+2]. \]
Reviewer: Yu. V. Kostarchuk

MSC:

81T08 Constructive quantum field theory
46N50 Applications of functional analysis in quantum physics
81Q15 Perturbation theories for operators and differential equations in quantum theory
41A50 Best approximation, Chebyshev systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lipatov, L. N.: Calculation of the Gell-Mann-Low function in scalar theory with strong non-linearity. Sov. Phys. JETP44, 1055-1062 (1976); Divergence of the perturbation-theory series and pseudoparticles. JETP Lett.25, 104-107 (1977); Divergence of the perturbation-theory series and the quasi-classical theory. Sov. Phys. JETP45, 216-223 (1977)
[2] Brezin, E., LeGuillou, J. C., Zinn-Justin, J.: Perturbation theory at large order. I. The ?2N interaction. Phys. Rev.D15, 1544-1557 (1977)
[3] Brézin, E., LeGuillou, J. C., Zinn-Justin, J.: Perturbation theory at large order. II. Role of the vacuum instability. Phys. Rev.D15, 1558-1564 (1977)
[4] Brézin, E., Parisi, G., Zinn-Justin, J.: Perturbation theory at large orders for a potential with degenerate minima. Phys. Rev.D16, 408-412 (1977)
[5] Simon, B.: Large orders and summability of eigenvalue perturbation theory: a mathematical overview. Int. J. Q. Chem.21, 3-25 (1982)
[6] LeGuillou, J. C., Zinn-Justin, J.: Critical exponents for the n-vector model in three dimensions from field theory. Phys. Rev. Lett.39, 95-98 (1977)
[7] Brézin, E., Parisi, G.: Critical exponents and large-order behaviour of perturbation theory. J. Stat. Phys.19, 269-292 (1978)
[8] LeGuillou, J. C., Zinn-Justin, J.: Critical exponents from field theory. Phys. Rev.B21, 3976-3998 (1980) · Zbl 0978.82507
[9] Guerra, F., Rosen, L., Simon, B.: Boundary conditions in the P(?)2 Euclidean field theory. Ann. Inst. H. Poincaré Sect.A25, 231-334 (1976)
[10] Jaffe, A.: Divergence of perturbation theory for Boson. Commun. Math. Phys.1, 127-149 (1965) · Zbl 0127.19706
[11] Eckmann, J.-P., Magnen, J., Sénéor, R.: Decay properties and Borel summability for the Schwinger functions inP(?)2 theories. Commun. Math. Phys.39, 251-271 (1975)
[12] Spencer, T.: The Lipatov argument. Commun. Math. Phys.74, 273-280 (1980)
[13] Herbst, I. W., Simon, B.: Some remarkable examples in eigenvalue perturbation theory. Phys. Lett.B78, 304-306 (1978)
[14] Simon, B.: The P(?)2 Euclidean (quantum) field theory. Princeton: Princeton University Press 1974 · Zbl 1175.81146
[15] Glimm, J., Jaffe, A.: Quantum physics. Berlin, Heidelberg, New York: Springer 1981 · Zbl 0461.46051
[16] Breen, S.: Large order perturbation theory for the anharmonic oscillator. Thesis (Rutgers University, 1982), and preprint
[17] Adams, R.: Sobolev spaces. London, New York: Academic Press 1975 · Zbl 0314.46030
[18] Ambrosetti, A., Rabinowitz, P. H.: Dual Variational Methods in Critical point Theory and Applications. J. Funct. Anal.14, 349-381 (1973) · Zbl 0273.49063
[19] Strauss, W. A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149-162 (1977) · Zbl 0356.35028
[20] Morrey, C. Jr.: Multiple integrals in the calculus of variations. New York: Springer 1966 · Zbl 0142.38701
[21] Simon, B.: Trace ideals and their applications. London, New York: Cambridge University Press 1979 · Zbl 0423.47001
[22] Brydges, D., Fröhlich, J., Seiler, E.: Construction of quantized gauge fields. II. Convergence of the lattice approximation. Commun. Math. Phys.71, 159-205 (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.