×

zbMATH — the first resource for mathematics

Introductory review. Some new thoughts about some old malaria models. (English) Zbl 0567.92020

MSC:
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armitage, P., A note on the epidemiology of malaria, Trop. dis. bull., 50, 890-892, (1953)
[2] Aron, J.L., Population dynamics of immunity to malaria, ()
[3] Aron, J.L., Malaria epidemiology and detectability, Trans. roy. soc. trop. med. hyg., 76, 595-601, (1982)
[4] Aron, J.L.; May, R.M., The population dynamics of malaria, ()
[5] Bailey, N.T.J., The biomathematics of malaria, (1982), Charles Griffin London · Zbl 0494.92018
[6] Bates, M., Ecology of anopheline mosquitoes, (), 302-330
[7] Bekessy, A.; Molineaux, L.; Storey, J., Estimation of incidence and recovery rates of plasmodium falciparum parasitemia from longitudinal data, Bull. WHO, 54, 685-693, (1976)
[8] Boyd, M.F., Epidemiology: factors related to the definitive host, (), 608-697
[9] Bruce-Chwatt, L.J., Mathematical models in the epidemiology and control of malaria, Trop. geo. med., 28, 1-8, (1976)
[10] Busenberg, S.; Cooke, K.L., Periodic solutions of a periodic nonlinear delay differential equation, SIAM J. appl. math., 35, 704-721, (1978) · Zbl 0391.34022
[11] Cale, W.B.; O’Neill, R.V.; Shugart, H.H., Development and application of desirable ecological models, Ecological modeling, 18, 171-186, (1983)
[12] Carter, R.; Gwadz, R.W., Infectiousness and gamete immunization in man, (), 263-297
[13] Clements, A.N.; Paterson, G.D., The analysis of mortality and survival rates in wild populations of mosquitoes, J. appl. ecol., 18, 373-399, (1981)
[14] Cohen, J.E.; Singer, B., Malaria in nigeria: constrained continuous-time Markov models for discrete-time longitudinal data on human mixed-species infections, ()
[15] Cohen, S., Immunity to malaria, Proc. roy. soc. London ser. B, 203, 323-345, (1979)
[16] Cooke, K.L., Stability analysis for a vector disease model, Rocky mountain J. math., 9, 31-42, (1979) · Zbl 0423.92029
[17] Cornille-Brögger, R.; Mathews, H.M.; Storey, J.; Ashkar, T.S.; Brögger, S.; Molineaux, L., Changing patterns in the humoral immune response to malaria before, during, and after the application of control measures: A longitudinal study in the west african savanna, Bull. WHO, 56, 597-600, (1978)
[18] Cuellar, C.B., A theoretical model of the dynamics of an anopheles gambiae population under challenge with eggs giving rise to sterile males, Bull. WHO, 40, 205-212, (1969)
[19] Cushing, J., Stable positive periodic solutions of the time dependent logistic equation under possible hereditary influences, J. math. anal. appl., 60, 747-754, (1977) · Zbl 0367.34032
[20] Davidson, G.; Draper, C.C., Field study of some of the basic factors concerned in the transmission of malaria, Trans. roy. soc. trop. med. hyg., 47, 522-535, (1953)
[21] Dietz, K., Mathematical models for malaria, 7th international biometric conference, hannover, (16-21 Aug. 1970), presented at
[22] Dietz, K.; Molineaux, L.; Thomas, A., A malaria model tested in the african savannah, Bull. WHO, 50, 347-357, (1974)
[23] Draper, C.C., Observations on the infectiousness of gametocytes in hyperendemic malaria, Trans. roy. soc. trop. med. hyg., 47, 160-165, (1953)
[24] Dutertre, J., Etude d’un modèle epidemiologique appliqué au paludisme, Ann. soc. belge med. trop., 56, 127-141, (1976)
[25] Earle, W.C.; Perez, M.; del Rio, J.; Arzola, C., Observation on the course of naturally acquired malaria in puerto rico, Puerto rico J. pub. health and trop. med., 14, 391-406, (1939)
[26] Eisen, H.N., Immunology, (), 446
[27] Elderkin, R.H.; Berkowitz, D.P.; Farris, F.A.; Gunn, C.F.; Hickernell, F.J.; Kass, S.N.; Mansfield, F.I.; Taranto, R.G., On the steady state of an age dependent model for malaria, (), 491-512
[28] Fine, P.E.M., Superinfection: A problem in formulating a problem, Trop. dis. bull., 72, 475-488, (1975)
[29] Fine, P.E.M., Ross’s a priori pathometry—a perspective, Proc. roy. soc. med., 68, 547-551, (1975)
[30] Garrett-Jones, C., The human blood index of malaria vectors in relation to epidemiological asssessment, Bull. WHO, 30, 241-261, (1964)
[31] Garrett-Jones, C.; Boreham, P.F.L.; Post, C.P., Feeding habits of anophelines (diptera: culicidae) in 1971-78 with reference to the human blood index: A review, Bull. entomol. res., 70, 165-185, (1980)
[32] Garrett-Jones, C.; Shidrawi, G.R., Malaria vectorial capacity of a population of anopheles gambiae, Bull. WHO, 40, 531-545, (1969)
[33] Gillies, M.T., The recognition of age-groups within populations of anopheles gambiae by the pre-gravid rate and the sporozoite rate, Ann. trop. med. parasit., 48, 58-74, (1954)
[34] Gillies, M.T., Assessment of control: some problems in the measurement of anopheline populations, Misc. publ. entomol. soc. amer., 7, 156-167, (1970)
[35] Hethcote, H.W., Asymptotic behavior and stability in epidemic models, (), Lecture Notes in Biomathematics · Zbl 0212.52104
[36] Jeffrey, G.M.; Eyles, D.E., Infectivity to mosquitoes of plasmodium falciparum as related to gametocyte density and duration of infection, Amer. J. trop. med. hyg., 3, 219-224, (1954)
[37] Krafsur, E.S.; Armstrong, J.C., An integrated view of entomological and parasitological observations on falciparum malaria in gambela, western Ethiopian lowlands, Trans. roy. soc. trop. med. hyg., 72, 348-356, (1978)
[38] Kreier, J.P.; Green, T.J., The vertebrate Host’s immune response to plasmodia, (), 111-162
[39] Lotka, A.J., Contribution to the analysis of malaria epidemiology, Amer. J. hyg., 3, 1-121, (1923), (Suppl.)
[40] Macdonald, G., The analysis of infection rates in disease in which superinfection occurs, Trop. dis. bull., 47, 907-915, (1950)
[41] Macdonald, G., The analysis of the sporozoite rate, Trop. dis. bull., 49, 569-585, (1952)
[42] Macdonald, G., The epidemiology and control of malaria, (1957), Oxford U.P London
[43] Macdonald, G.; Göckel, G.W., The malaria parasite rate and interruption of transmission, Bull. WHO, 31, 365-377, (1964)
[44] Manson-Bahr, P.E.C.; Apsted, F.I.C., Manson’s tropical diseases, (1982), Bailliere Tindall London
[45] May, R.M.; Anderson, R.M., Population biology of infectious diseases,, Nature, 280, 455-461, (1979), Part II
[46] McGregor, I.A.; Williams, K.; Voller, A.; Billewicz, W.Z., Immunofluorescence and the measurement of immune response to hyperendemic malaria, Trans. roy. soc. trop. med. hyg., 59, 395-414, (1965)
[47] Miller, D.R.; Weidhass, D.E.; Hall, R.C., Parameter sensitivity in insect population modeling, J. theoret. biol., 42, 263-274, (1973)
[48] Miller, M.J., Observations on the natural history of malaria in the semiresistant west african, Trop. roy. soc. trop. med. hyg., 52, 152-168, (1958)
[49] Molineaux, L.; Gramiccia, G., The garki project: research on the epidemiology and control of malaria in the sudan savanna of west africa, (1980), WHO Geneva
[50] Muench, H., Catalytic models in epidemiology, (1959), Harvard U.P Cambridge
[51] Muirhead-Thomson, R.C., The malarial infectivity of an african village population to mosquitoes (anopheles gambiae): A random xenodiagnostic survey, Amer. J. trop. med. hyg., 6, 971-979, (1957)
[52] Muirhead-Thomson, R.C., Ecology of insect vector populations, (1968), Academic New York
[53] Najera, J.A., A critical review of the field application of a mathematical model of malaria eradication, Bull. WHO, 50, 449-457, (1974)
[54] Nardin, E.H.; Nussenzweig, R.S.; Bryan, J.H.; McGregor, I.A., Congenital transfer of antibodies against malarial sporozoites detected in Gambian infants, Amer. J. trop. med. hyg., 30, 1159-1163, (1981)
[55] I. Nåsell, A hybrid version of the Ross malaria model, Tech. Report 1980-2, Dept. of Math., Royal Institute of Technology, Stockholm.
[56] I. Nåsell, A hybrid model for malaria with superinfection, Tech. Report 1980-3, Dept. of Math., Royal Institute of Technology, Stockholm.
[57] I. Nåsell, On the Macdonald-Irwin treatment of superinfection in malaria, Tech. Report 1980-4, Dept. of Math., Royal Institute of Technology, Stockholm.
[58] Nedelman, J., Inoculation and recovery rates in the malaria model of dietz, molineaux, and Thomas, Math. biosci., 69, 209-233, (1984) · Zbl 0529.92019
[59] Nedelman, J., A negative binomial model for sampling mosquitoes in a malaria survey, Biometrics, 39, 1009-1020, (1983)
[60] J. Nedelman, Estimation and approximation for a model of multiple malaria infections, submitted for publication. · Zbl 0651.62103
[61] Payne, D.; Grab, B.; Fontaine, R.E.; Hempel, J.H.G., Impact of control measures on malaria transmission and general mortality, Bull. WHO, 54, 369-377, (1976)
[62] Pull, J.; Grab, B., A simple epidemiological model for evaluating the malaria inoculation rate and the risk of infection in infants, Bull. WHO, 51, 507-516, (1974)
[63] Ross, R., The prevention of malaria, (1911), John Murray London
[64] Service, M.W., A critical review of procedures for sampling populations of adult mosquitoes, Bull. entomol. res., 67, 343-382, (1977)
[65] Singer, B.; Cohen, J.E.; Singer, B.; Cohen, J.E., Estimating malaria incidence and recovery rates from panel surveys, Math. biosci., Math. biosci., 62, 151-152, (1982), Erratum · Zbl 0489.92022
[66] Smalley, M.E.; Brown, J.; Bassett, N.M., The rate of production of plasmodium falciparum gametocytes during natural infections, Trans. roy. soc. trop. med. hyg., 75, 318-319, (1981)
[67] Smalley, M.E.; Sinden, R.E., plasmodium flaciparum gametocytes: their longevity and infectivity, Parasitology, 74, 1-8, (1977)
[68] Targett, G.A.T., Immunology of malaria, (), 385-402
[69] Vanderberg, J.P.; Gwadz, R.W., The transmission by mosquitoes of plasmodia in the laboratory, (), 154-234
[70] Verma, B.L.; Ray, S.K.; Srivastava, R.N., Stochastic approach to the estimation of infective force and malaria parasite incidence rates in infants from longitudinal data, J. commun. dis., 12, 118-125, (1980)
[71] Verma, B.L.; Ray, S.K.; Srivastava, R.N., A stochastic model of malaria transition rates from longitudinal data considering the risk of “lost of followup”, J. epidem. comm. health, 37, 153-156, (1983)
[72] Voller, A.; Meuwissen, J.H.E.; Verhave, J.P., Methods for measuring the immunological response to plasmodia, (), 67-109
[73] Weiss, G.H.; Aron, J.L., Note on the formulation of a stochastic model of superinfection, Math. biosci., 67, 213-223, (1983) · Zbl 0528.92020
[74] Wernsdorfer, W.H., The importance of malaria in the world, ()
[75] Zavala, F.; Gwadz, R.W.; Collins, F.H.; Nussenzweig, R.S.; Nussenzweig, V., Monoclonal antibodies to circumsporozoite proteins identify the species of malaria parasite in infected mosquitoes, Nature, 299, 737-738, (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.