Chou, Jyhhorng; Horng, Ingrong Application of shifted Chebyshev series to the optimal control of linear distributed-parameter systems. (English) Zbl 0566.93028 Int. J. Control 42, 233-241 (1985). By use of a particular property of the shifted Chebyshev series, the optimal control of a distributed-parameter system is simplified into the optimal control of a linear time-invariant lumped-parameter system. Next, a directly computational formulation for evaluating the optimal control and trajectory of a linear distributed-parameter system is developed. The formulation is straightforward, and convenient for digital computation. An illustrative example is given to demonstrate the applicability of the proposed method. Cited in 9 Documents MSC: 93C20 Control/observation systems governed by partial differential equations 42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.) 44A45 Classical operational calculus 33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) 35K05 Heat equation 93B40 Computational methods in systems theory (MSC2010) 93C05 Linear systems in control theory Keywords:shifted Chebyshev series; distributed-parameter system; digital computation PDF BibTeX XML Cite \textit{J. Chou} and \textit{I. Horng}, Int. J. Control 42, 233--241 (1985; Zbl 0566.93028) Full Text: DOI References: [1] ABRAMOWITZ M., Handbook of Mathematical Functions (1967) [2] BARNETT S., Matrix Methods for Engineers and Scientists (1979) · Zbl 0507.15001 [3] DOI: 10.1109/TAC.1975.1101057 · Zbl 0317.49042 · doi:10.1109/TAC.1975.1101057 [4] DOI: 10.1080/0020718508961115 · Zbl 0555.93024 · doi:10.1080/0020718508961115 [5] DOI: 10.1016/0045-7906(82)90018-0 · Zbl 0503.65076 · doi:10.1016/0045-7906(82)90018-0 [6] DOI: 10.1080/0020718508961146 · Zbl 0555.93017 · doi:10.1080/0020718508961146 [7] DOI: 10.1109/TAC.1980.1102278 · Zbl 0439.49004 · doi:10.1109/TAC.1980.1102278 [8] DOI: 10.1016/0016-0032(83)90082-0 · Zbl 0538.93013 · doi:10.1016/0016-0032(83)90082-0 [9] SAGE A. P., Optimal Systems Control (1977) [10] DOI: 10.1115/1.3140662 · Zbl 0525.93040 · doi:10.1115/1.3140662 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.