×

zbMATH — the first resource for mathematics

The evolution of disturbances in shear flows at high Reynolds numbers. (English) Zbl 0566.76046
(Author’s summary:) This paper is concerned with the propagation of wavelike disturbances in shear flows. The analysis shows that three dimensionality may dominate the evolution process.
Reviewer: A.K.Sharma

MSC:
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lin, The Theory of Hydrodynamic Stability (1955) · Zbl 0068.39202
[2] Drazin, Hydrodynamic Stability (1981)
[3] Klebanoff, J. Fluid Mech. 12 pp 1– (1962) · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[4] Squire, Proc. Roy. Soc. London Ser. A 142 pp 621– (1933) · JFM 59.1458.02 · doi:10.1098/rspa.1933.0193
[5] Stuart, J. Fluid Mech. 9 pp 353– (1960) · Zbl 0096.21102 · doi:10.1017/S002211206000116X
[6] Benney, Stud. Appl. Math. 48 pp 181– (1969) · Zbl 0197.25403 · doi:10.1002/sapm1969483181
[7] Haberman, Stud. Appl. Math. 51 pp 139– (1972) · Zbl 0265.76052 · doi:10.1002/sapm1972512139
[8] Benney, J. Fluid Mech. 10 pp 209– (1961) · Zbl 0096.21201 · doi:10.1017/S0022112061000196
[9] Lin, Proc. Symp. Appl. Math. 13 pp 1– (1962) · doi:10.1090/psapm/013/0137413
[10] Maslowe, Topics Appl. Phys. 45 pp 181– (1981)
[11] Stuart, J. Fluid Mech. 29 pp 417– (1967) · Zbl 0152.45403 · doi:10.1017/S0022112067000941
[12] Patera, Proceedings of the 7th International Conference on Numerical Methods in Fluid Dynamics pp 329– (1980)
[13] Benney, Stud. Appl. Math. 64 pp 185– (1981) · Zbl 0481.76048 · doi:10.1002/sapm1981643185
[14] Howard, J. Fluid Mech. 16 pp 333– (1963) · doi:10.1017/S002211206300080X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.