zbMATH — the first resource for mathematics

Sturmian eigenvalue equations with a Chebyshev polynomial basis. (English) Zbl 0564.65059
From authors’ summary: A Chebyshev polynomial basis is proposed for the solution of Sturmian eigenvalue equations of the form \(Av=f\) which are encountered in quantum scattering theory. A is a non-self-adjoint second order differential operator and the solution is regular at the origin and has an outgoing wave condition asymptotically. Detailed computation of eigenvalues and eigenfunctions for five cases including analytical and physically realistic examples confirms the inherent polynomial stability of the method characteristic of the minimax norm.
Reviewer: T.Reginska

65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
81U05 \(2\)-body potential quantum scattering theory
34L99 Ordinary differential operators
Full Text: DOI
[1] Rawitscher, G.H., Phys. rev. C, 25, 2196, (1982)
[2] Reid, W.T., Sturmian theory for ordinary differential equations, (1980), Springer-Verlag New York · Zbl 0459.34001
[3] Rivlin, T.J., The Chebyshev polynomials, (1974), Wiley-Interscience New York · Zbl 0291.33012
[4] Kantorovich, L.V.; Akilov, G.P., Functional analysis, (1982), Pergamon Press New York · Zbl 0484.46003
[5] Nussenzveig, H.M., Nucl. phys., 11, 499, (1959)
[6] G. H. RAWITSCHER AND G. DELIC, Sturmian eigenvalue equations on a bessel function basis, submitted for publication. · Zbl 0585.34018
[7] Delic, G., Comput. phys. commun., 18, 73, (1979)
[8] Luke, Y.L., ()
[9] Rice, J.R., ()
[10] Delic, G., Formulae for numerical differentiation and integration, Ikda 73/8, (June 1973)
[11] Bardin, C.; Dandeu, Y.; Gauthier, L.; Guillemin, J.; Lena, T.; Pernet, J.-M.; Wolter, H.H.; Tamura, T., Comput. phys. commun., 3, 73, (1972)
[12] Smith, B.T.; Boyle, J.M.; Dongarra, J.J.; Garbow, B.S.; Ikebe, Y.; Klema, V.C.; Moler, C.B., Matrix eigensystem routines - EISPACK guide, (1976), Springer-Verlag New York · Zbl 0325.65016
[13] Delic, G.; Rawitscher, G.H., Bull. amer. phys. soc., 27, 576, (1982)
[14] Rawitscher, G.H.; Delic, G.; Rawitscher, G.H.; Delic, G., Phys. rev. C, Phys. rev. C, 29, 1153, (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.