×

zbMATH — the first resource for mathematics

The emergence of isolated coherent vortices in turbulent flow. (English) Zbl 0561.76059
A study is made of some numerical calculations of two-dimensional and geostrophic turbulent flows. The primary result is that, under a broad range of circumstances, the flow structure has its vorticity concentrated in a small fraction of the spatial domain, and these concentrations typically have lifetimes long compared with the characteristic time for nonlinear interactions in turbulent flow (i.e. an eddy turnaround time).

MSC:
76F05 Isotropic turbulence; homogeneous turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Larichev, Rep. Acad. Sci. USSR, Oceanologie 264 pp 229– (1982)
[2] Kraichnan, Rep. Prog. Phys. 00 pp 000– (1980)
[3] DOI: 10.1175/1520-0469(1971)028 2.0.CO;2 · doi:10.1175/1520-0469(1971)028 · doi:2.0.CO;2
[4] DOI: 10.1175/1520-0469(1983)040 2.0.CO;2 · doi:10.1175/1520-0469(1983)040 · doi:2.0.CO;2
[5] DOI: 10.1146/annurev.fl.11.010179.002153 · doi:10.1146/annurev.fl.11.010179.002153
[6] DOI: 10.1063/1.1692443 · Zbl 0217.25801 · doi:10.1063/1.1692443
[7] DOI: 10.1017/S0022112075001504 · Zbl 0366.76043 · doi:10.1017/S0022112075001504
[8] DOI: 10.1063/1.863907 · Zbl 0489.76033 · doi:10.1063/1.863907
[9] DOI: 10.1175/1520-0469(1981)038 2.0.CO;2 · doi:10.1175/1520-0469(1981)038 · doi:2.0.CO;2
[10] Malanotti-Rizzoli, Adv. Geophys. 24 pp 147– (1982) · doi:10.1016/S0065-2687(08)60520-8
[11] DOI: 10.1017/S0022112080001371 · doi:10.1017/S0022112080001371
[12] DOI: 10.1143/JPSJ.50.980 · doi:10.1143/JPSJ.50.980
[13] DOI: 10.1146/annurev.fl.15.010183.002021 · doi:10.1146/annurev.fl.15.010183.002021
[14] McWilliams, Geophys. Astrophys. Fluid Dyn. 19 pp 207– (1982)
[15] Aref, WHOI Tech. Rep. none pp 233– (1980)
[16] DOI: 10.1016/0377-0265(81)90001-4 · doi:10.1016/0377-0265(81)90001-4
[17] DOI: 10.1175/1520-0485(1979)009 2.0.CO;2 · doi:10.1175/1520-0485(1979)009 · doi:2.0.CO;2
[18] DOI: 10.1017/S0022112071001204 · Zbl 0219.76064 · doi:10.1017/S0022112071001204
[20] DOI: 10.1016/0021-9991(77)90023-7 · Zbl 0461.76040 · doi:10.1016/0021-9991(77)90023-7
[21] DOI: 10.1103/PhysRevLett.40.859 · doi:10.1103/PhysRevLett.40.859
[22] Davey, Univ. Washington Special Rep. 61 pp 219– (1980)
[23] DOI: 10.1017/S0022112073000686 · Zbl 0266.76039 · doi:10.1017/S0022112073000686
[24] DOI: 10.1016/0021-9991(73)90042-9 · Zbl 0267.76009 · doi:10.1016/0021-9991(73)90042-9
[25] Weiss, La Jolla Inst. 11 pp 401– (1981)
[26] McWilliams, Geophys. Astrophys. Fluid Dyn. 24 pp 1– (1983)
[27] DOI: 10.1038/260126a0 · doi:10.1038/260126a0
[28] DOI: 10.1175/1520-0469(1972)029 2.0.CO;2 · doi:10.1175/1520-0469(1972)029 · doi:2.0.CO;2
[29] Leith, Phys. Fluids 28 pp 145– (1984)
[30] DOI: 10.1175/1520-0469(1971)028 2.0.CO;2 · doi:10.1175/1520-0469(1971)028 · doi:2.0.CO;2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.