×

zbMATH — the first resource for mathematics

Three-dimensional tertiary motions in a plane shear layer. (English) Zbl 0561.76055
The authors study the stability of a plane shear flow, exhibiting an inflection point, with the help of a Galerkin technique. They are able to follow the bifurcation behaviour of the basic flow (with growing Grashof number) up to steady but three-dimensional modes of instability. The paper is interesting in giving another example of a possible path to turbulence.
Reviewer: G.Zimmermann

MSC:
76E30 Nonlinear effects in hydrodynamic stability
76F10 Shear flows and turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1016/0017-9310(73)90161-0
[2] Kelvin, Phil. Mag. 42 pp 362– (1871)
[3] DOI: 10.1017/S0022112067002538 · Zbl 0322.76020
[4] DOI: 10.1017/S0022112074001571 · Zbl 0291.76019
[5] DOI: 10.1017/S0022112072002988 · Zbl 0237.76023
[6] DOI: 10.1017/S0022112069001467 · Zbl 0167.25704
[7] Busse, J. Maths and Phys. 46 pp 140– (1967) · Zbl 0204.28401
[8] Thomas, Bull. Am. Phys. Soc. 26 pp 1252– (1981)
[9] DOI: 10.1017/S002211207400190X
[10] Stuart, Proc. R. Soc. Lond. A362 pp 27– (1978)
[11] Breidenthal, J. Fluid Mech. 109 pp 1– (1981)
[12] DOI: 10.1017/S0022112067000941 · Zbl 0152.45403
[13] Benney, Stud. Appl. Maths 48 pp 181– (1969) · Zbl 0197.25403
[14] Squire, Proc. R. Soc. Lond. A142 pp 621– (1933) · JFM 59.1458.02
[15] DOI: 10.1017/S002211206700045X · Zbl 0144.47101
[16] DOI: 10.1063/1.1711258 · Zbl 0124.20002
[17] DOI: 10.1016/0017-9310(79)90166-2 · Zbl 0407.76029
[18] Huerre, Proc. R. Soc. Lond. A371 pp 509– (1980) · Zbl 0447.76035
[19] Huerre, Phil. Trans. R. Soc. Lond. A293 pp 643– (1980)
[20] DOI: 10.1063/1.864226
[21] Herbert, Rep. 26 pp 1257– (1981)
[22] Herbert, Bull. Am. Phys. Soc. 26 pp 1257– (1981)
[23] Helmholtz, On discontinuous movements of fluids 36 pp 337– (1868)
[24] Haberman, Stud. Appl. Maths 51 pp 139– (1972) · Zbl 0265.76052
[25] DOI: 10.1017/S0022112071002635 · Zbl 0227.76071
[26] Rudakov, Prikl. Mat. Mekh. 31 pp 349– (1967)
[27] Rayleigh, Proc. Lond. Math. Soc. 11 pp 57– (1880)
[28] Pierrehumbert, J. Fluid Mech. 114 pp 59– (1982)
[29] DOI: 10.1103/PhysRevLett.45.989
[30] Orszag, J. Fluid Mech. 96 pp 159– (1980)
[31] Nagata, Bull. Am. Phys. Soc. 26 pp 1257– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.