# zbMATH — the first resource for mathematics

A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. (English) Zbl 0559.58025
Let p be a classical observable and P a corresponding quantum observable. By comparing classical and quantum partition functions one can prove that for large $$\lambda$$ (1) $$N(\lambda)\sim \gamma volume$$ $$(p\leq 1)$$. Here $$\gamma$$ is a thermodynamical constant (independent of p and P) and $$N(\lambda)$$ is the number of eigenvalues of P less than $$\lambda$$. The author’s purpose is to give a ”soft” proof of (1). For this reason he introduces a Weyl algebra W associated with a symplectic cone y, and considers self-adjoint positive elliptic operators of order one belonging to W. He then examines the function $$\zeta (P,\mu):=\int_{0}\lambda^{\mu}dN(\lambda)$$, $$\mu\in {\mathbb{C}}$$, and proves that $$\zeta(P,\mu)$$ converges in the half-plane Re$$\mu<-d$$, $$2d=\dim y$$, and has a meromorphic continuation to the whole $$\mu$$-plane with poles at $$\mu =-d,-d-1$$, etc. The pole at $$\mu =-d$$ is simple with residue equal to a constant $$\gamma$$, depending only on W, times the symplectic volume of the set where the symbol of P is less than one. From this (1) is deduced by a Tauberian argument.
Reviewer: N.Jacob

##### MSC:
 58J50 Spectral problems; spectral geometry; scattering theory on manifolds 81S99 General quantum mechanics and problems of quantization 35P20 Asymptotic distributions of eigenvalues in context of PDEs 58J40 Pseudodifferential and Fourier integral operators on manifolds 53D50 Geometric quantization
Full Text:
##### References:
  Abraham, R; Marsden, J, Foundations of mechanics, (1978), Benjamin Reading, Mass  de Monvel, L.Boutet; Guillemin, V, The spectral theory of Toeplitz operators, () · Zbl 0469.47021  \scP. Chernoff, Irreducible representations of infinite dimensional Lie algebras and groups, preliminary report. · Zbl 0578.58022  Dieudonné, J, Foundations of modern analysis, (1960), Academic Press New York · Zbl 0100.04201  Dixmier, J, C∗-algebras, (1977), North-Holland New York  Gelfand, I.M, ()  Grothendieck, A, Produits tensoriels topologiques et espaces nucleaires, Mem. amer. math. soc., No. 16, (1955) · Zbl 0064.35501  Guillemin, V, Some classical theorems in spectral theory revisited, () · Zbl 0452.35093  Guillemin, V; Sternberg, S, The metaplectic representation, Weyl operators and spectral theory, J. funct. anal., 42, (1981) · Zbl 0469.58017  Helffer, B; Robert, D, Comportement asymptotique precise du spectre d’opérateurs globalement elliptiques dans $$R$$^n, Sem. goulaouic-Schwartz., No. 11, (1980) · Zbl 0503.35070  Hörmander, L, Fourier integral operators, I, Acta math., 127, 79-183, (1971) · Zbl 0212.46601  Hörmander, L, On the asymptotic distribution of the eigenvalues of pseudodifferential operators in $$R$$^n, Ark. mat., 17, No. 2, (1979) · Zbl 0436.35064  Howe, R, Quantum mechanics and partial differential equations, J. funct. anal., 38, 188-254, (1980) · Zbl 0449.35002  Mackey, G, The mathematical foundations of quantum mechanics, (1963), Benjamin New York · Zbl 0114.44002  Seeley, R, Complex powers of an elliptic operator, (), 288-307  Weishu, Shih, On the symbol of a pseudo-differential operator, Bull. amer. math. soc., 74, 657-659, (1968) · Zbl 0165.10901  Shubin, M; Tulovsky, V, On asymptotic distribution of eigenvalues of pseudodifferential operators on $$R$$^n, Math. USSR-sb., 21, 565-583, (1973) · Zbl 0295.35068  Swan, R, Vector bundles and projective modules, Trans. amer. math. soc., 105, 264-277, (1962) · Zbl 0109.41601  Titchmarsh, E.C, The theory of functions, (1939), Oxford Univ. Press Oxford · Zbl 0022.14602  Voros, A, An algebra of pseudo-differential operators and the asymptotics of quantum mechanics, Mimeographed report, (1976), Saclay  Weyl, H, Gruppentheorie und quantummechanick, (1928), Hirzel Leipzig · JFM 54.0954.03  Widom, H, Szegö’s theorem and a complete symbolic calculus for pseudodifferential operators, ()  Wiener, N, Touberian theorems, Ann. of math., 33, 1-100, (1932) · JFM 58.0226.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.