×

zbMATH — the first resource for mathematics

Non-existence of invariant circles. (English) Zbl 0557.58019
This note gives a rigorous proof that if \(| k| >4/3\), there do not exists any non-trivial homotopically invariant circles for the dynamical system associated with the difference equation \(\Delta^ 2x_ n=(k/2\pi)\sin (2\pi x_ n)\).
Reviewer: P.N.Bajaj

MSC:
37D99 Dynamical systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Birkhoff, Bull Soc. Math. de France 60 pp 1– (1932)
[2] DOI: 10.1007/BF02401754 · JFM 47.0985.03 · doi:10.1007/BF02401754
[3] Benettin, Phys. Rev. 14 pp 2338– (1976)
[4] Titchmarsh, The Theory of Functions (1939) · Zbl 0022.14602
[5] DOI: 10.1016/0370-1573(79)90023-1 · doi:10.1016/0370-1573(79)90023-1
[6] Herman, Asterisque none pp 103– (1983)
[7] DOI: 10.1007/BFb0021758 · doi:10.1007/BFb0021758
[8] Mather, Ergod. Th. & Dyn. Sys. 2 pp 397– (1982)
[9] DOI: 10.1063/1.524170 · doi:10.1063/1.524170
[10] Powell, J. Phys. 12 pp 2053– (1979)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.