×

zbMATH — the first resource for mathematics

Modular forms and de Rham cohomology; Atkin-Swinnerton-Dyer congruences. (English) Zbl 0553.10023
See the preview in Zbl 0542.10022.

MSC:
11F33 Congruences for modular and \(p\)-adic modular forms
11F11 Holomorphic modular forms of integral weight
11F67 Special values of automorphic \(L\)-series, periods of automorphic forms, cohomology, modular symbols
14F40 de Rham cohomology and algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] [A-SwD] Atkin, A.O.L., Swinnerton-Dyer, H.P.F.: Modular forms on noncongruence subgroups. Proc. Symp. Pure Math. A.M.S. XIX, 1-25 (1971) · Zbl 0235.10015
[2] [Be] Belyi, G.V.: Galois extensions of a maximal cyclotomic field. Izv. Akad. Nauk SSSR Ser. Mat.43, (no. 2) 267-276, 479 (1979)
[3] [B-O] Berthelot, P., Ogus, A.: Notes on crystalline cohomology. Princeton: Princeton University Press 1978 · Zbl 0383.14010
[4] [C] Cartier, P.: Groupes formels, fonctions automorphes et fonctions zêta des courbes elliptiques. Actes, 1970 Congrès Intern. Math. Tome2, 291-299 (1971)
[5] [D1] Deligne, P.: Formes modulaires et représentationsl-adiques. Sem. Bourbaki, éxp. 355. Lecture Notes in Mathematics, vol. 179, pp. 139-172. Berlin-Heidelberg-New York: Springer 1969
[6] [D2] Deligne, P.: Courbes elliptiques: Formulaire (d’après J. Tate). Modular functions of one variable IV. Lecture Notes in Mathematics, vol. 476, pp. 53-73. Berlin-Heidelberg-New York: Springer 1975 · Zbl 1214.11075
[7] [D3] Deligne, P.: La conjecture de Weil I. Publ. Math. IHES37, 272-307 (1974)
[8] [D4] Deligne, P.: La conjecture de Weil II. Publ. Math. IHES52, 137-252 (1980) · Zbl 0456.14014
[9] [D-R] Deligne, P., Rapoport, M.: Les schémas de modules des courbes elliptiques. Modular functions of one variable II. Lecture Notes in Mathematics, vol. 349, pp. 143-316. Berlin-Heidelberg-New York: Springer 1973
[10] [Di] Ditters, E.J.: Sur les congruences d’atkin et de Swinnerton-Dyer. C.R. Acad. Sci. Paris Sér. A-B282, A1, A1131?A1134 (no. 19) (1972)
[11] [Dw1] Dwork, B.:p-adic cycles. Publ. Math. IHES37, 27-115 (1969) · Zbl 0284.14008
[12] [Dw2] Dwork, B.: On Hecke polynomials. Invent. Math.12, 249-256 (1971) · Zbl 0219.14014 · doi:10.1007/BF01418784
[13] [H] Honda, T.: On the theory of commutative formal groups. J. Math. Soc. Japan22, 213-246 (1970) · Zbl 0202.03101 · doi:10.2969/jmsj/02220213
[14] [K1] Katz, N.M.:p-adic properties of modular forms and modular schemes. Modular functions of one variable III. Lecture Notes in Mathematics, vol. 350, pp. 69-190. Berlin-Heidelberg-New York: Springer 1973
[15] [K2] Katz, N.M.: Crystalline cohomology, Dieudonné modules and Jacobi sums. Automorphic forms, representation theory and arithmetic. Bombay: Tata Institute of Fundamental Research 1981
[16] [M] Monsky, P.: Formal cohomology III. Ann. of Math.93, 315-343 (1971) · Zbl 0213.47501 · doi:10.2307/1970777
[17] [O] Oda, T.: Formal groups attached to elliptic modular forms. Invent. Math.61, 81-102 (1980) · Zbl 0433.14037 · doi:10.1007/BF01389896
[18] [S] Scholl, A.J.: A trace formula forF-crystals. Invent. math.79, 31-48 (1985) · Zbl 0553.14007 · doi:10.1007/BF01388655
[19] [Sh] Shimura, G.: Sur les intégrales attachées aux formes automorphes. J. Math. Soc. Japan10, 1-28 (1958) · Zbl 0081.07603 · doi:10.2969/jmsj/01010001
[20] [SGA1] Séminaire de géométrie algébrique.: Revêtements étales et groupe fondamental, par A. Grothendieck. Lecture Notes in Mathematics, vol. 244. Berlin-Heidelberg-New York: Springer 1971
[21] [SGA41/2] Séminaire de géométrie algébrique.: Cohomologie étale, par P. Deligne. Lecture Notes in Mathematics, vol. 569. Berlin-Heidelberg-New York: Springer 1977
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.