×

zbMATH — the first resource for mathematics

Geometrically nonlinear analysis of space frames by an incremental iterative technique. (English) Zbl 0552.73071
The paper explores the analysis of the geometrically nonlinear behaviour of space structures, using the modified arc length method of Riks and Crisfield [E. Riks, Int. J. Solids Struct. 15, 529-551 (1979; Zbl 0408.73040); M. A. Crisfield, Comput. Struct. 13, 55-62 (1981; Zbl 0479.73031)]. Several problems not previously documented in the literature are encountered in the solution procedure, and means evolved for circumventing the same. The resulting algorithm is robust and able to handle problems that exhibit several negative eigenvalues simultaneously. Several examples are given of the trace of load-deflection paths of space frames.

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74B20 Nonlinear elasticity
74G60 Bifurcation and buckling
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Renton, J.D., Stability of space frames by computer, J. struct. div., ASCE, 18, 81-103, (1962)
[2] Connor, J.J.; Logcher, D.; Chen, S.C., Nonlinear analysis of elastic framed structures, J. struct. div., ASCE, 94, 1525-1547, (1968)
[3] Tezcan, S.S.; Mahapatra, B.C., Tangent stiffness matrix for space frame members, J. struct. div., ASCE, 95, 1257-1270, (1969)
[4] Berke, L.; Mallett, R.H., Automated large deflection and stability analysis of three dimensional structures, (), 381-419
[5] Connor, J.J., Analysis of geometrically nonlinear framed structures, (), 421-443
[6] Chu, K.H.; Rampetsreiter, R.H., Large deflection buckling of space frames, J. struct. div., ASCE, 98, 2701-2722, (1972)
[7] Oran, C., Tangent stiffness in space frames, J. struct. div., ASCE, 987-1001, (1973)
[8] Remseth, S.N., Nonlinear static and dynamic analysis of framed structures, Comput. & structures, 10, 879-897, (1979) · Zbl 0417.73071
[9] Papadrakakis, M., Post-buckling analysis of spatial structures by vector iteration methods, Comput. & structures, 14, 393-402, (1981) · Zbl 0467.73052
[10] Bergan, P.G., Solution techniques for nonlinear finite element problems, Internat. J. numer. meths. engrg., 12, 1677-1696, (1978) · Zbl 0392.73081
[11] Bergan, P.G., Solution algorithms for nonlinear structural problems, Comput. & structures, 12, 497-509, (1980) · Zbl 0443.73069
[12] Ramm, E., Strategies for tracing the nonlinear response near limit points, (), 63-89 · Zbl 0474.73043
[13] Crisfield, M.A., Numerical analysis of structures, () · Zbl 0855.73001
[14] Powell, G.; Simons, J., Improved iteration strategy for nonlinear structures, Internat. J. numer. meths. engrg., 17, 1455-1467, (1981) · Zbl 0462.73065
[15] Paradiso, M.; Tempestar, G., Member buckling effects in nonlinear analysis of space frames, (), 395-405
[16] Heinrich, R.; Dickel, T.; Renner, D., Snap-through buckling of reticulated space trusses, J. struct. div., ASCE, 107, 129-143, (1981)
[17] Watson, L.G.; Holzer, S.M., Quadratic convergence of Crisfield’s method, Comput. & structures, 17, 69-72, (1983) · Zbl 0503.73064
[18] Crisfield, M.A., A fast incremental/iterative solution procedure that handles ‘snap-through’, Comput. & structures, 13, 55-62, (1981) · Zbl 0479.73031
[19] Sharifi, P.; Popov, E.P., Nonlinear buckling analysis of sandwich arches, J. engrg. mech. civ., ASCE, 97, 1397-1411, (1971)
[20] Sharifi, P.; Popov, E.P., Nonlinear finite element analysis of sandwich shells of revolution, Aiaa j., 11, 715-722, (1973) · Zbl 0264.73107
[21] Bergan, P.G.; Søreide, T.H., Solution of large displacement and instability problems using the current stiffness parameter, (), 647-669
[22] Argyris, J.H., Continua and discontinua, (), 11-189
[23] Pian, T.H.H.; Tong, P., Variational formulation of finite-displacements analysis, (), 43-63 · Zbl 0167.52805
[24] Yamada, Y., Large deflection and critical loads analysis of framed structures, (), 819-829
[25] Zienkiewicz, O.C., Incremental displacement in nonlinear analysis, Internat. J. numer. meths. engrg., 3, 587-592, (1971)
[26] Haisler, W.E.; Stricklin, J.H.; Key, J.E., Displacement incrementation in nonlinear structural analysis by the self-correcting method, Internat. J. numer. meths. engrg., 11, 3-10, (1977) · Zbl 0347.73056
[27] Batoz, J.L.; Dhatt, G., Incremental displacement algorithms for nonlinear problems, Internat. J. numer. meths. engrg., 14, 1262-1267, (1979) · Zbl 0423.73061
[28] Riks, E., An incremental approach to the solution of snapping and buckling problems, Internat. J. solids structures, 15, 529-551, (1979) · Zbl 0408.73040
[29] Wempner, G.A., Discrete approximations related to nonlinear theories of solids, Internat. J. solids structures, 7, 1581-1599, (1971) · Zbl 0222.73054
[30] Meek, J.L.; Ho, P., Shape finding techniques and design of thin concrete shells, ()
[31] Meek, J.L.; Tan, H.S., Large deflection and post-buckling analysis of two and three dimensional frames, () · Zbl 0578.73064
[32] Belytschko, T.; Schwer, L., Large displacement, transient analysis of space frames, Internat. J. numer. meths. engrg., 11, 65-84, (1977) · Zbl 0347.73053
[33] Williams, F.S., An approach to the nonlinear behaviour of the members of a rigid jointed plane framework with finite deflections, Quart. J. mech. appl. math., 17, 451-469, (1964) · Zbl 0129.18803
[34] Wood, R.D.; Zienkiewicz, O.C., Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells, Comput. & structures, 7, 725-735, (1977) · Zbl 0372.73062
[35] Timoshenko, S.P.; Gere, J.M., Theory of elastic stability, (), 305-310
[36] Griggs, H.P., Experimental study of instability in elements of shallow space frames, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.