×

zbMATH — the first resource for mathematics

Numerical identification of selected rate constants in large chemical reaction systems. (English) Zbl 0551.65051
Significant progress in the development of user-oriented software for parameter identification in large chemical reaction systems is reported. The progress includes new theoretical ideas and an increased domain of applicability of the codes. The solution of several realistic large scale problems is demonstrated.

MSC:
65L05 Numerical methods for initial value problems
80A30 Chemical kinetics in thermodynamics and heat transfer
34A55 Inverse problems involving ordinary differential equations
Software:
Larkin
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bader, G.; Deuflhard, P., A semi-implicit midpoint rule for stiff systems of ordinary differential equations, Numer. math., 41, 373-398, (1983) · Zbl 0522.65050
[2] Bader, G.; Nowak, U.; Deuflhard, P., An advanced simulation package for large chemical reaction systems, (), Stiff computation, (1984), Oxford University Press Oxford, to appear
[3] Bard, Y., Nonlinear parameter estimation, (1974), Academic Press New York · Zbl 0345.62045
[4] Bock, H.G., Recent advances in parameter identification techniques for ODE’s, (), 95-121
[5] Businger, P.; Golub, G.H., Linear least squares solutions by Householder transformations, Numer. math., 7, 269-276, (1965) · Zbl 0142.11503
[6] Byrne, G.D.; DeGregoria, A.J.; Salane, D.E., A program for Fitting rate constants in gas phase chemical kinetics models, Techn. rep., exxon res. eng. comp., (1982), and, SIAM J. Sci. Statist. Comput., to appear · Zbl 0545.65049
[7] Deuflhard, P., A stepsize control for continuation methods and its special application to multiple shooting techniques, Numer. math., 33, 115-146, (1979) · Zbl 0428.65032
[8] Deuflhard, P.; Sautter, W., On rank-deficient pseudoinverses, J. lin. alg. appl., 29, 91-111, (1980) · Zbl 0452.65019
[9] Deuflhard, P.; Apostolescu, V., A study of the Gauss-Newton method for the solution of nonlinear least squares problems, (), 129-150 · Zbl 0443.65049
[10] Deuflhard, P.; Bader, G.; Nowak, U., LARKIN—a software package for the numerical simulation of large systems arising in chemical reaction kinetics, (), 38-55
[11] Deuflhard, P., Recent progress in extrapolation methods for odes, (), and, SIAM Rev., to appear · Zbl 0602.65047
[12] Garfinkel, D.; Hess, B., Metabolic control mechanisms. VII. A detailed computer model of the glycolytic pathway in ascites cells, J. bio. chem., 239, 971-983, (1964)
[13] Gear, C.W.; Vu, T., Smooth numerical solutions of ordinary differential equation systems, (), 2-12
[14] Isbarn, G., Kinetik, mechanismus and computersimulierung der thermischen zersetzung von n-hexan, ()
[15] Isbarn, G.; Ederer, H.J.; Ebert, K.H., The thermal decomposition of n-hexane: kinetics, mechanism, and simulation, (), 235-248
[16] Nowak, U.; Deuflhard, P., Towards parameter identification for large chemical reaction systems, (), 13-26 · Zbl 0549.65054
[17] F.W. Schneider, M. Heinrichs and T. Poll, Private communication, 1980.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.