×

zbMATH — the first resource for mathematics

Order and stepsize control in extrapolation methods. (English) Zbl 0543.65049
This paper presents a new theory for joint order and stepsize control in extrapolation methods which is based on measuring the discretization errors by the subdiagonal rather than diagonal entries of the extrapolation tableau. An optimal column index, which defines a locally optimal order, is chosen by minimizing the work per unit step over all columns up to some maximum column index. In addition Shannon’s information theory is applied to derive a convergence model that is expected to describe the behaviour of an extrapolation method on a large set of test problems. Some numerical testing indicates an improvement in efficiency and robustness for this new device.
Reviewer: K.Burrage

MSC:
65L05 Numerical methods for initial value problems
Software:
Larkin
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bader, G., Deuflhard, P.: A Semi-Implicit Mid-Point Rule for Stiff Systems of Ordinary Differential Equations. Numer. Math.41, 373-398 (1983) · Zbl 0522.65050 · doi:10.1007/BF01418331
[2] Bulirsch, R., Stoer, J.: Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods. Numer. Math.8, 1-13 (1966) · Zbl 0135.37901 · doi:10.1007/BF02165234
[3] Deuflhard, P.: A Study of Extrapolation Methods Based on Multistep Schemes without Parasitic Solutions. J. Appl. Math. Phys. (ZAMP)30, 177-189 (1979) · Zbl 0406.70012 · doi:10.1007/BF01601932
[4] Deuflhard, P.: Kepler Discretization in Regular Celestial Mechanics. Cel. Mech.21, 213-223 (1980) · Zbl 0422.70019 · doi:10.1007/BF01230900
[5] Deuflhard, P., Bader, G., Nowak, U.: LARKIN ? a software package for the numerical simulation of LARge systems arising in chemical reaction KINetics. In: Ebert, Deuflhard, Jäger (eds.): ?Modelling of Chemical Reaction Systems?, Springer Series in Chemical Physics18, 38-55 (1981)
[6] Enright, W.H., Hull, T.E., Lindberg, B.: Comparing Numerical Methods for Stiff Systems of ODE’s. BIT15, 10-48 (1975) · Zbl 0301.65040 · doi:10.1007/BF01932994
[7] Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys.60, 1877-1884 (1974) · doi:10.1063/1.1681288
[8] Garfinkel, D., Hess, B.: Metabolic control mechanisms. J. Biol. Chem.239, 971-983 (1964)
[9] Gragg, W.B.: On extrapolation algorithms for ordinary initial value problems. SIAM J. Numer. Anal.2B, 384-403 (1965) · Zbl 0135.37803
[10] Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing Numerical Methods for Ordinary Differential Equations. SIAM J. Numer. Anal.9, 603-637 (1973) · Zbl 0221.65115 · doi:10.1137/0709052
[11] Hussels, H.G.: Schrittweitensteuerung bei der Integration gewöhnlicher Differentialgleichungen mit Extrapolationsverfahren. Univ. Köln, Math. Inst.: Diplomarbeit, 1973
[12] Lindberg, B.: On smoothing for the trapezoidal rule, an analytic study of some representative test examples. Roy. Inst. Technology, Stockholm: Dep. Information Processing Computer Science, Techn. Rep. NA 71.31, 1971 · Zbl 0221.65134
[13] Nowak, U.: Numerische Behandlung großer steifer Differentialgleichungssysteme mit einer semi-impliziten Mittelpunktsregel. Universität Heidelberg, Institut für Angewandte Mathematik: Diplomarbeit, 1980
[14] Schryer, N.L.: An Extrapolation Step-Size Monitor for Solving Ordinary Differential Equations. Unpublished manuscript, presented at the ACM meeting San Diego, 1974
[15] Shampine, L.F.: What everyone solving differential equations numerically should know. In: Gladwell, I., Sayers, D.K. (eds.): Computational Techniques for Ordinary Differential Equations. London: Academic Press, 1980 · Zbl 0463.65051
[16] Shannon, C.E.: The Mathematical Theory of Communication. Urbana-Chicago-London: The University of Illinois Press, 1949 · Zbl 0041.25804
[17] Stetter, H.J.: Symmetric Two-Step Algorithms for Ordinary Differential Equations. Computing5, 267-280 (1970) · Zbl 0209.47001 · doi:10.1007/BF02248027
[18] Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations. Berlin, Heidelberg, New York: Springer, 1973 · Zbl 0276.65001
[19] Stoer, J.: Extrapolation Methods for the Solution of Initial Value Problems and their Practical Realization. Proc. Conf. on Numerical Solution of Ordinary Differential Equations, University of Texas, Austin, 1972 · Zbl 0273.65057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.