×

zbMATH — the first resource for mathematics

Dominance in SSB utility theory. (English) Zbl 0542.90006
Summary: SSB utility theory represents preferences between probability measures by the positive part of a skew-symmetric bilinear functional \(\Phi\) defined on pairs of measures. Three facets of the theory are examined. First, dominance axioms are used to extend \(\Phi\) to an integral form. Second, the maximizing behavior of \(\Phi\) on subspaces of measures is investigated. Third, aspects of stochastic dominance are explored in the SSB setting.

MSC:
91B16 Utility theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allais, M, Le comportement l’homme rationnel devant le risque: critique des postulats et axiomes de l’école américaine, Econometrica, 21, 503-546, (1953) · Zbl 0050.36801
[2] Bawa, V.S, Stochastic dominance: A research bibliography, Management sci., 28, 698-712, (1982) · Zbl 0482.90055
[3] Chew, S.H; MacCrimmon, K.R, Alpha-nu choice theory: A generalization of expected utility theory, ()
[4] Fishburn, P.C, Intransitive indifference in preference theory: A survey, Oper. res., 18, 207-228, (1970) · Zbl 0195.21404
[5] Fishburn, P.C, Suborders on commodity spaces, J. econom. theory, 2, 321-328, (1970)
[6] Fishburn, P.C, Unbounded expected utility, Ann. statist., 3, 884-896, (1975) · Zbl 0311.62001
[7] Fishburn, P.C, Stochastic dominance without transitive preferences, Management sci., 24, 1277-1286, (1978) · Zbl 0386.90002
[8] Fishburn, P.C, Nontransitive measurable utility, J. math. psychol., 25, 31-67, (1982) · Zbl 0499.90006
[9] Fishburn, P.C, Transitive measurable utility, J. econom. theory, 31, 293-317, (1983) · Zbl 0521.90018
[10] Fishburn, P.C, The foundations of expected utility, (1982), Reidel Dordrecht · Zbl 0497.90001
[11] Fishburn, P.C, SSB utility theory: an economic perspective, (1983), Bell Laboratories · Zbl 0553.90016
[12] Fishburn, P.C; Vickson, R.G, Theoretical foundations of stochastic dominance, (), 37-113
[13] Halmos, P.R, Measure theory, (1950), Van Nostrand Princeton, N.J · Zbl 0117.10502
[14] Herstein, I.N; Milnor, J, An axiomatic approach to measurable utility, Econometrica, 21, 291-297, (1953) · Zbl 0050.36705
[15] Kahneman, D; Tversky, A, Prospect theory: an analysis of decision under risk, Econometrica, 47, 263-291, (1979) · Zbl 0411.90012
[16] ()
[17] Kelley, J.L, General topology, (1955), American Book Company New York · Zbl 0066.16604
[18] Kreweras, G, Aggregation of preference orderings, (), 73-79, compiled by S. Sternberg et al.
[19] Loève, M, Probability theory, (1960), Van Nostrand Princeton, N.J · Zbl 0108.14202
[20] Loomes, G; Sugden, R, Regret theory: an alternative theory of rational choice under uncertainty, Econom. J., 92, 805-824, (1982)
[21] Luce, R.D; Raiffa, H, Games and decisions, (1957), Wiley New York · Zbl 0084.15704
[22] MacCrimmon, K.R, Descriptive and normative implications of the decision-theory postulates, (), 3-32
[23] Machina, M.J, “expected utility” analysis without the independence axiom, Econometrica, 50, 277-323, (1982) · Zbl 0475.90015
[24] May, K.O, Intransitivity, utility, and the aggregation of preference patterns, Econometrica, 22, 1-13, (1954)
[25] Michalos, A.C, Estimated utility and corroboration, British J. philos. sci., 16, 327-331, (1966)
[26] Nikaidô, H, On von Neumann’s minimax theorem, Pacific J. math., 4, 65-72, (1954) · Zbl 0055.10004
[27] Savage, L.J, The foundations of statistics, (1954), Wiley New York · Zbl 0121.13603
[28] Schoemaker, P.J.H, Experiments on decisions under risk: the expected utility hypothesis, (1980), Martinus, Nijhoff Boston
[29] Sonnenschein, H.F, Demand theory without transitive preferences, with applications to the theory of competitive equilibrium, (), 215-223
[30] Tversky, A, Intransitivity of preferences, Psychol. rev., 76, 31-48, (1969)
[31] von Neumann, J, Zur theorie der gesellschaftsspiele, Math. ann., 100, 295-320, (1928) · JFM 54.0543.02
[32] von Neumann, J; Morgenstern, O, Theory and games and economic behavior, (1944), Princeton Univ. Press Princeton, N.J · Zbl 0063.05930
[33] Whitt, W, Comparing probability measures on a set with an intransitive preference relation, Management sci., 25, 505-511, (1979) · Zbl 0423.90003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.