×

zbMATH — the first resource for mathematics

A stiffness matrix extrapolation strategy for nonlinear analysis. (English) Zbl 0542.73108
This paper describes an iteration strategy which may be more efficient than the full Newton-Raphson or modified Newton-Raphson methods. Similarly to the Newton-Raphson methods, it can be used in conjunction with any of the automatic step length increment procedure described to trace the post limit response.
Reviewer: J.Jumarie

MSC:
74S30 Other numerical methods in solid mechanics (MSC2010)
74B20 Nonlinear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Turner, M.J.; Dill, E.H.; Martin, H.C.; Melosh, R.J., Large deflections of structures subjected to heating and external loads, J. aerospace sci., 27, 97-106, (1960)
[2] Bergan, P.G.; Søreide, T., A comparative study of different numerical solution techniques as applied to non-linear structural problem, Comput. meths. appl. mech. engrg., 2, 185-201, (1973) · Zbl 0259.73032
[3] Crisfield, M.A., Incremental/iterative solution procedures for non-linear structural analysis, () · Zbl 0605.73062
[4] Ramm, E., Strategies for tracing the nonlinear response near limit points, (), 13-89 · Zbl 0474.73043
[5] Stricklin, J.A.; Haisler, W.E., Formulations and solution procedures for nonlinear structural analysis, Comput. & structures, 7, 125-136, (1977) · Zbl 0347.73060
[6] Stricklin, J.A.; Haisler, W.E.; von Reisemann, W.A., Evaluation of solution procedures for materials and/or geometrically nonlinear structural analysis, Aiaa j., 10, 292-299, (1973) · Zbl 0265.73065
[7] Bergan, P.G.; Horrigmoe, G.; Krakeland, B.; Søreide, T.H., Solution techniques for nonlinear finite element problems, Internat. J. numer. meths. engrg., 12, 1677-1696, (1978) · Zbl 0392.73081
[8] Jacoby, S.L.S.; Kowalik, J.S.; Pizzo, J.T., Iterative methods for nonlinear optimization problems, (1972), Prentice-Hall Englewood Cliffs, NJ · Zbl 0315.65036
[9] Powell, M.J.D., An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 155-162, (1964) · Zbl 0132.11702
[10] Fletcher, R.; Reeves, C.M., Function minimization by conjugate gradients, Comput. J., 7, 149-154, (1964) · Zbl 0132.11701
[11] Broyden, C.G., The convergence of a double-rank minimization 2: the new algorithm, J. inst. math. appl., 6, 222-231, (1970) · Zbl 0207.17401
[12] Fletcher, R., A new approach to variable metric algorithms, Comput. J., 13, 317-322, (1970) · Zbl 0207.17402
[13] Fletcher, R.; Powell, M.J.D., A rapidly convergent method for minimization, Comput. J., 6, 163-168, (1963) · Zbl 0132.11603
[14] Crisfield, M.A., A faster modified Newton-raphson iteration, Comput. meths. appl. mech. engrg., 20, 267-278, (1979) · Zbl 0434.73086
[15] Brodlie, K.W., Unconstrained minimization, () · Zbl 0322.65033
[16] Argyris, J.H., Elasto-plastic matrix displacement analysis of three-dimensional continua, J. roy. aeron. soc., 69, 633-636, (1965)
[17] Oden, J.T.; Kubitza, W.K., Numerical analysis of nonlinear pneumatic structures, (), 87-107
[18] Nielsen, K.L., Methods in numerical analysis, (1956), MacMillan New York · Zbl 0124.07404
[19] Sharifi, P.; Popov, E.P., Nonlinear buckling analysis of sandwich arches, J. engrg. mech. div., ASCE, 97, 1397-1412, (1971)
[20] Batoz, J.L.; Dhatt, G., Incremental displacement algorithms for nonlinear problems, Internat. J. numer. meths. engrg., 14, 1262-1266, (1979) · Zbl 0423.73061
[21] Powell, G.; Simons, J., Improved iteration strategy for nonlinear structures, Internat. J. numer. meths. engrg., 17, 1455-1467, (1981) · Zbl 0462.73065
[22] Riks, E., An incremental approach to the solution of snapping and buckling problems, Internat. J. solids and structures, 15, 529-551, (1979) · Zbl 0408.73040
[23] Wempner, G.A., Discrete approximations related to nonlinear theories of solids, Internat. J. solids and structures, 7, 1581-1599, (1971) · Zbl 0222.73054
[24] Crisfield, M.A., A fast incremental/iterative solution procedure that handles snap-through, Comput. & structures, 13, 55-62, (1981) · Zbl 0479.73031
[25] Isaacson, E.; Keller, H.B., Analysis of numerical methods, (), 187-189 · Zbl 0168.13101
[26] Argyris, J.H., Nonlinear oscillations using the finite element techniques, Comput. meths. appl. mech. engrg., 2, 203-250, (1973) · Zbl 0266.73049
[27] Jennings, A., Frame analysis including change of geometry, J. struct. div., ASCE, 94, 627-644, (1968)
[28] Felippa, C.A., Solution of linear equations with skyline-stored symmetric matrix, Comput. & structures, 5, 13-29, (1975) · Zbl 0319.65026
[29] Frisch-Fay, R., Flexible bars, (), 35-40 · Zbl 0124.18001
[30] Haisler, W.E.; Stricklin, J.A., Displacement incrementation in nonlinear structural analysis by the self correcting method, Internat. J. numer. meths. engrg., 11, 3-10, (1977) · Zbl 0347.73056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.