×

zbMATH — the first resource for mathematics

On quantum solitons and their classical relatives: II. ”Fermion-boson reciprocity” and classical vs quantum problem for the sine-Gordon system. (English) Zbl 0541.70030
[For part I see: the author, ibid. 22, 574-580 (1981; Zbl 0466.70019)] - A correct classical limit is here shown to arise for the Heisenberg system: phase manifolds of the classical Heisenberg and sine-Gordon systems cannot be then viewed independently as a consequence of the quantum relation.

MSC:
70Sxx Classical field theories
81T17 Renormalization group methods applied to problems in quantum field theory
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
70G99 General models, approaches, and methods
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevD.19.511 · doi:10.1103/PhysRevD.19.511
[2] DOI: 10.1063/1.523977 · doi:10.1063/1.523977
[3] DOI: 10.1007/BF02772773 · doi:10.1007/BF02772773
[4] DOI: 10.1103/PhysRevD.18.520 · doi:10.1103/PhysRevD.18.520
[5] von Neumann J., Comp. Math. 6 pp 1– (1938)
[6] DOI: 10.1007/BF01028041 · doi:10.1007/BF01028041
[7] DOI: 10.1016/0034-4877(77)90019-2 · Zbl 0354.46042 · doi:10.1016/0034-4877(77)90019-2
[8] DOI: 10.1063/1.1931213 · Zbl 0139.46102 · doi:10.1063/1.1931213
[9] DOI: 10.1007/BF02724733 · doi:10.1007/BF02724733
[10] Takhtadjan L. A., Teor. Mat. Fiz. 21 pp 160– (1974)
[11] DOI: 10.1007/BF01609155 · Zbl 0308.46054 · doi:10.1007/BF01609155
[12] DOI: 10.1063/1.523695 · doi:10.1063/1.523695
[13] DOI: 10.1016/0370-1573(78)90147-3 · doi:10.1016/0370-1573(78)90147-3
[14] DOI: 10.1063/1.524383 · doi:10.1063/1.524383
[15] DOI: 10.1063/1.524943 · Zbl 0466.70019 · doi:10.1063/1.524943
[16] Garbaczewski P., Nuovo Cimento A 44 pp 108– (1978)
[17] Garbaczewski P., Bull. Acad. Pol. Sci. 26 pp 360– (1978)
[18] DOI: 10.1103/PhysRevD.14.472 · doi:10.1103/PhysRevD.14.472
[19] DOI: 10.1007/BF01609844 · doi:10.1007/BF01609844
[20] DOI: 10.1007/BF01609167 · Zbl 0355.35062 · doi:10.1007/BF01609167
[21] DOI: 10.1088/0305-4470/4/3/009 · doi:10.1088/0305-4470/4/3/009
[22] Arecchief F. T., Phys. Rev. A 6 pp 2210– (1972)
[23] DOI: 10.1007/BF01646493 · Zbl 1125.82305 · doi:10.1007/BF01646493
[24] DOI: 10.1016/0375-9601(79)90861-2 · doi:10.1016/0375-9601(79)90861-2
[25] DOI: 10.1016/0375-9601(79)90533-4 · doi:10.1016/0375-9601(79)90533-4
[26] DOI: 10.1103/PhysRevD.19.3666 · Zbl 1267.81285 · doi:10.1103/PhysRevD.19.3666
[27] DOI: 10.1007/BF01036710 · doi:10.1007/BF01036710
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.