×

zbMATH — the first resource for mathematics

Regulator design for distributed parameter systems with constant disturbances. (English) Zbl 0537.93045
A design procedure is proposed for a regulator which can be realized in finite-dimensional theories and techniques for an infinite-dimensional system. The theory is applied to a parabolic distributed parameter system, given in a Hilbert space, with boundary or pointwise inputs and outputs.
Reviewer: M.Megan

MSC:
93C25 Control/observation systems in abstract spaces
93C05 Linear systems in control theory
93C20 Control/observation systems governed by partial differential equations
93B50 Synthesis problems
46C99 Inner product spaces and their generalizations, Hilbert spaces
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BALAS M. J., Int. J. Control 29 pp 523– (1979) · Zbl 0398.93027 · doi:10.1080/00207177908922716
[2] CURTAIN R. F., Infinite Dimensional Linear Systems Theory (1978) · doi:10.1007/BFb0006761
[3] CURTAIN R. F., I.E.E.E. Trans, autom. Control 23 pp 98– (1982) · Zbl 0477.93039 · doi:10.1109/TAC.1982.1102875
[4] DAVISON E. J., Automatica 7 pp 489– (1971) · Zbl 0223.93023 · doi:10.1016/0005-1098(71)90099-9
[5] JOHNSON C. D., I.E.E.E. Trans, autom. Control 13 pp 416– (1968) · doi:10.1109/TAC.1968.1098947
[6] KATO T., Perturbation Theory of Linear Operators (1966) · Zbl 0148.12601 · doi:10.1007/978-3-642-53393-8
[7] KOBAYASHI T., Int. J. Control 37 pp 975– (1983) · Zbl 0551.93050 · doi:10.1080/00207178308933023
[8] KWAKERNAACK H., Linear Optimal Control Systems (1972)
[9] LIONS J. L., Optimal Control of Systems Governed by Partial Differential Equations (1971) · Zbl 0203.09001 · doi:10.1007/978-3-642-65024-6
[10] MIZOHATA S., The Theory of Partial Differential Equations (1973) · Zbl 0263.35001
[11] POHJOLAINEN S. A., I.E.E.E. Trans, autom. Control 23 pp 17– (1982) · Zbl 0493.93029 · doi:10.1109/TAC.1982.1102887
[12] WONHAM W. M., SI AM Jl Control 11 pp 424– (1973) · Zbl 0259.93012 · doi:10.1137/0311035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.