×

The physiological role of myoglobin: More than a problem in reaction- diffusion kinetics. (English) Zbl 0532.92011

This review is concerned with the function of myoglobin, but brings in hemoglobin because both have been used in recent work on facilitated diffusion of oxygen. By examining a model for such facilited diffusion through porous membranes a steady state system of equations for myoglobin is developed together with suitable boundary conditions. Possible methods of solution are considered and various results given and examined. The mechanism of oxygen delivery to muscles is then discussed.
Reviewer: D.A.Quinney

MSC:

92Cxx Physiological, cellular and medical topics
34B15 Nonlinear boundary value problems for ordinary differential equations
34E20 Singular perturbations, turning point theory, WKB methods for ordinary differential equations
35K50 Systems of parabolic equations, boundary value problems (MSC2000)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Wittenberg, J. B., Myoglobin-facilitated oxygen diffusion: Role of myoglobin in oxygen entry into muscle, Physiol. Rev., 50, 559-636 (1970)
[2] Kreuzer, F., Facilitated diffusion of oxygen and its possible significance; a review, Respir. Physiol., 9, 1-30 (1970)
[3] Schultz, J. S.; Goddard, J. O.; Suchdeo, S. R., Facilitated transport via carrier-mediated diffusion in membranes. Part I. Mechanistic aspects, experimental systems and characteristic regimes, AIChE J., 20, 417-445 (1974)
[4] Goddard, J. D.; Schultz, J. S.; Suchdeo, S. R., Facilitated transport via carrier-mediated diffusion in membranes. Part II. Mathematical aspects and analyses, AIChE J., 20, 625-645 (1974)
[5] Roughton, R. J.W., Diffusion and chemical reaction velocity as joint factors in determining the rate of uptake of oxygen and carbon monoxide by the red blood corpuscle, Proc. Roy. Soc. London Ser. B, 3, 1-36 (1932)
[6] Millikan, G. A., Muscle-hemoglabin, Physiol. Rev., 19, 503-523 (1939)
[7] Klug, A.; Kreuzer, F.; Roughton, F. J.W., The diffusion of oxygen in concentrated hemoglobin solutions, Helv. Physiol. Pharm. Acta, 14, 121-128 (1956)
[8] Klug, A.; Kreuzer, F.; Roughton, F. J.W., Simultaneous diffusion and chemical reaction in thin layers of hemoglobin solution, Proc. Roy. Soc. London Ser. B, 145, 452-472 (1956)
[9] Wittenberg, J. B., Oxygen transport: A new function proposed for myoglobin, Biol. Bull., 117, 402 (1959)
[10] Scholander, P. F., Oxygen transport through hemoglobin solutions, Science, 131, 585-590 (1960)
[11] Hemmingsen, E.; Scholander, P. F., Specific transport of oxygen through hemoglobin solutions, Science, 132, 1379-1381 (1960)
[12] Wyman, J., Facilitated diffusion and the possible role of myoglobin as a transport mechanism, J. Biol. Chem., 241, 115-121 (1966)
[13] Wittenberg, J. B., The molecular mechanism of hemoglobin-facilitated oxygen diffusion, J. Biol. Chem., 241, 104-114 (1966)
[14] Jacquez, J. A.; Kutchai, H.; Daniels, E., Hemoglobin-facilitated diffusion of oxygen: Interfacial and thickness effects, Resp. Physiol., 15, 166-181 (1972)
[15] Yung, D.; Probstein, R. B., Similarity conditions in facilitated transport, J. Phys. Chem., 77, 2201-2205 (1973)
[16] Gonzalez-Fernandez, J.; Atta, S. E., Transport of oxygen in solutions of myoglobin and hemoglobin, Math. Biosci., 54, 265-290 (1981) · Zbl 0454.92012
[17] Kreuzer, F.; Hoofd, L. J.C., Facilitated diffusion of oxygen in the presence of hemoglobin, Resp. Physiol., 10, 542-558 (1970)
[18] Kutchai, H.; Jacquez, J. A.; Mather, F. J., Nonequilibrium facilitated oxygen transport in hemoglobin solution, Biophys. J., 10, 38-54 (1970)
[19] Kutchai, H., Numerical study of oxygen uptake by layers of hemoglobin solution, Resp. Physiol., 10, 223-284 (1970)
[20] Murray, J. D., On the molecular mechanism of facilitated oxygen diffusion by haemoglobin and myoglobin, Proc. Roy. Soc. London Ser. B, 178, 95-110 (1971)
[21] Mitchell, P. J.; Murray, J. D., Facilitated diffusion: The problem of boundary conditions, Biophysik, 9, 177-190 (1973)
[22] Kutchai, H., Role of red cell membrane in oxygen uptake, Resp. Physiol., 23, 121-132 (1975)
[23] Rubinow, S. I.; Dembo, M., The facilitated diffusion of oxygen by hemoglobin and myoglobin, Biophys. J., 18, 29-42 (1977)
[24] Weingarden, M.; Mizukami, H.; Rice, S. A., Transient effects on the initial rate of oxygenation of red blood cells, Bull. Math. Biol., 44, 119-134 (1982) · Zbl 0468.92009
[25] Weingarden, M.; Mizukami, H.; Rice, S. A., Factors defining the rate of oxygen uptake by the red blood cell, Bull. Math. Biol., 44, 135-147 (1982) · Zbl 0468.92010
[26] Meldon, J. H.; Smith, K. A.; Colton, C. K., Analysis of 2,3-diphosphoglycerate-mediated, hemoglobin-facilitated oxygen transport in terms of the Adair reaction mechanism, (Bicher, H. I.; Bruley, D. F., Oxygen Transport to Tissue (1973), Plenum: Plenum New York), 199-205
[27] Stroeve, P.; Smith, K. A.; Colton, C. K., Facilitated transport of oxygen in blood in terms of the Adair mechanism and the effect of 2,3-diphosphoglycerate, Bibl. Anat., 13, 173-174 (1975)
[28] Gijsbers, G. H.; Van Ouwerkerk, H. J., Boundary layer resistance of steady-state oxygen diffusion facilitated by a four-step chemical reaction with hemoglobin in solution, Pflügers Arch., 365, 231-241 (1976)
[29] Hanna, R. E.; Garner, J. B., An analysis of facilitated-diffusion problems, Math. Biosci., 63, 9-20 (1983) · Zbl 0513.34022
[31] Smith, K. A.; Meldon, J. H.; Colton, C. K., An analysis of carrier-facilitated transport, AIChE J., 19, 102-111 (1973)
[32] Suchdeo, S. R.; Schultz, J. S., Mathematical approaches to the analysis of facilitated transport phenomenon in membranes, Chem. Eng. Progr. Symp. Ser., 67, 114, 165-173 (1971)
[33] Cole, J. D., Perturbation Methods in Applied Mathematics (1968), Blaisdell · Zbl 0162.12602
[34] Moll, W., The diffusion coefficient of myoglobin in muscle homogenate, Pflügers Arch., 299, 247-251 (1968)
[35] Wittenberg, B. A.; Wittenberg, J. B., Role of myoglobin in the oxygen supply to red skeletal muscle, J. Biol. Chem., 250, 9038-9043 (1975)
[36] Murray, J. D., On the role of myoglobin in muscle respiration, J. Theoret. Biol., 47, 115-126 (1974)
[37] Taylor, B. A.; Murray, J. D., Effect of the rate of oxygen consumption on muscle, J. Math. Biol., 4, 1-20 (1977) · Zbl 0357.92004
[38] Cole, R. P.; Wittenberg, B. A.; Caldwell, P. R.B., Myoglobin function in the isolated flurocarbon-perfused dog heart, Amer. J. Physiol., 234, H567-H572 (1978)
[39] Cole, R. P., Myoglobin function in exercising skeletal muscle, Science, 216, 523-525 (1982)
[40] Gayeski, T. E.J.; Honig, C. R., Myoglobin saturation and calculated \(P_{O_2}\) in single cells of resting gracilis muscle, (Silver, I. A.; Erecinska, M.; Bicher, H. I., Oxygen Transport to Tissue — III (1977), Plenum: Plenum New York), 77-84
[41] Schwarzmann, V.; Grunewald, W. A., Myoglobin-\(O_2\) saturation profiles in muscle sections of chicken gizzard and the facilitated \(O_2\)-transport by Mb, (Silver, I. A.; Erecinska, M.; Bicher, H. I., Oxygen Transport to Tissue — III (1977), Plenum: Plenum New York), 301-310
[42] deKoning, J.; Hoofd, L. J.C.; Kreuzer, F., Oxygen transport and the function of myoglobin, Pflügers Arch., 389, 211-217 (1981)
[43] Hoofd, L.; Kreuzer, F., A new mathematical approach for solving carrier-facilitated steady-state diffusion problems, J. Math. Biol., 8, 1-13 (1979) · Zbl 0406.92013
[44] Gonzales-Fernandez, J. M.; Atta, S. E., Facilitated transport of oxygen in the presence of membranes in the diffusion path, Biophys. J., 38, 133-141 (1982)
[45] Bloom, W.; Fawcett, D. W., A Textbook of Histology (1968), W.B. Saunders: W.B. Saunders Philadelphia
[46] Smith, D. S., Muscle (1972), Academic: Academic New York
[47] Franzini-Armstrong, C., Membranous systems in muscle fibers, (Bourne, G. H., The Structure and Function of Muscle, Vol. II (1973), Academic), 532-619, Part 2, Chapter 9
[48] Padykula, H. A.; Gauthier, G. F., Morphological and cytochemical characteristics of fiber types in normal mammalian skeletal muscle, (Milhorat, A. T., Exploratory Concepts in Muscular Dystrophy and Related Disorders (1967), Excerpta Med. Found), 117-128, No. 147
[49] Gauthier, G. F., The ultrastructure of three fiber types in mammalian skeletal muscle, (Briskey, E. J.; Cassens, R. G.; Marsh, B. B., The Physiology and Biochemistry of Muscle as a Food, Vol. 2 (1970), Univ. of Wisconsin Press: Univ. of Wisconsin Press Madison), Chapter 7
[50] Hoppeler, H.; Lüthi, P.; Claassen, H.; Weibel, E. R.; Howald, H., The ultrastructure of the normal human skeletal muscle, Pflügers Arch., 344, 217-232 (1973)
[51] Krieger, D. A.; Tate, C. A.; McMillan-Wood, J.; Booth, F. W., Populations of rat skeletal muscle mitochondria after exercise and immobilization, J. Appl. Physiol., 48, 23-28 (1980)
[52] Gollnick, P. D.; King, D. W., Effect of exercise and training on mitochondria of rat skeletal muscle, Amer. J. Physiol., 216, 1502-1509 (1969)
[53] Kiessling, K. H.; Piehl, K.; Lundquist, C. G., Effect of physical training on ultrastructural features in human skeletal muscle, (Pernow, B.; Saltin, B., Muscle Metabolism during Exercise (1971), Plenum: Plenum New York), 97-101
[54] Jacquez, J. A., Respiratory Physiology (1979), Hemisphere-McGraw-Hill
[55] Jöbsis, F. F., Basic processes in cellular respiration, (Handbook of Physiology, Section 3: Respiration, Vol. I (1964), Amer. Physiol. Soc: Amer. Physiol. Soc Washington)
[56] Chance, B., Reaction of oxygen with the respiratory chain in cells and tissues, J. Gen. Physiol., 49, 1, 163-188 (1965), Part 2
[57] Barzu, O.; Satre, M., Determination of oxygen affinity of respiratory systems using oxymyoglobin as oxygen donor, Anal. Biochem., 36, 428-433 (1970)
[58] Hudlicka, O., Muscle Blood Flow (1973), Swets and Zeitlinger: Swets and Zeitlinger Amsterdam
[59] Romanul, F. C.A., Capillary supply and metabolism of muscle fibers, Arch. Neurol., 12, 497-509 (1965)
[60] Kayar, S. R.; Banchero, N., Distribution of capillaries and diffusion distances in guinea pig myocardium, Pflügers Arch., 396, 350-352 (1983)
[61] Keul, J.; Doll, E.; Keppler, D., Energy Metabolism of Human Muscle (1972), Univ. Park Press: Univ. Park Press Baltimore
[62] Asmussen, E., Muscular Exercise, (Handbook of Physiology, Section 3: Respiration, Vol. II (1965), Amer. Physiol. Soc: Amer. Physiol. Soc Washington), 939-978
[63] Duling, B. R.; Berne, R. M., Longitudinal gradients in periarteriolar oxygen tension, Circul. Res., 27, 669-678 (1970)
[64] Duling, B. R.; Pittman, R. N., Oxygen tension: Dependent or independent variable in local control of blood flow?, Fed. Proc., 34, 2012-2019 (1975)
[65] Folkow, B.; Halicka, H. D., A comparison between “red” and “white” muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and exercise, Microvasc. Res., 1, 1-14 (1968)
[66] James, N. T., Histochemical demonstration of myoglobin in skeletal muscle fibres and muscle spindles, Nature, 219, 1174-1175 (1968)
[67] Morita, S.; Cassens, R. G.; Briskey, E. J., Localization of myoglobin in striated muscle of the domestic pig; benzidine and \(NADH_2\)-TR reactions, Stain Techn., 44, 283-286 (1969)
[68] Livingston, O. J.; LaMar, G. N.; Brown, W. D., Myoglobin diffusion in bovine heart muscle, Science, 220, 71-73 (1983)
[69] Riveros-Moreno, V.; Wittenberg, J. B., The self-diffusion coefficients of myoglobin and hemoglobin in concentrated solutions, J. Biol. Chem., 247, 895-901 (1972)
[70] Fletcher, J. E., On facilitated oxygen diffusion in muscle tissues, Biophys. J., 29, 437-458 (1980)
[71] Grote, J.; Thewe, G., Die Bedingungen für die Sauerstoffversorgung des Herzmuskelgewebes, Pflügers Arch., 276, 142-165 (1962)
[72] (Altman, P. L.; Dittmer, D. S., Metabolism. Metabolism, Biol. Handbooks (1968), Fed. Amer. Soc. Exptl. Biol: Fed. Amer. Soc. Exptl. Biol Bethesda, Md)
[73] Antonini, E., Interrelationship between structure and function in hemoglobin and myoglobin, Physiol. Rev., 45, 123-170 (1965)
[74] Fletcher, J. E., Mathematical modeling of the microcirculation, Math. Biosci., 38, 159-202 (1978) · Zbl 0381.92003
[75] Kreuzer, F., Oxygen supply to tissues: The Krogh model and its assumptions, Experientia, 38, 1415-1426 (1982)
[76] Mainwood, G. W.; Rakusan, K., A model for intracellular energy transport, Canad. J. Physiol. Pharmacol., 60, 98-102 (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.