zbMATH — the first resource for mathematics

A gradually slowing travelling band of chemotactic bacteria. (English) Zbl 0528.92004

92Cxx Physiological, cellular and medical topics
92F05 Other natural sciences (mathematical treatment)
35Q99 Partial differential equations of mathematical physics and other areas of application
92C05 Biophysics
Full Text: DOI
[1] Adler, J.: Chemotaxis in bacteria. Ann. Rev. Biochem. 44, 341-356 (1975)
[2] Holz, M., Chen, S.-H.: Quasi-elastic light scattering from migrating chemotactic bands of Escherichia Coli. Biophys. J. 23, 15-31 (1978)
[3] Holz, M., Chen, S.-H.: Spatio-temporal structure of migrating chemotactic bands of E. coli travelling band profile. Biophys. J. 26, 243-261 (1979)
[4] Keller, E. F., Segel, L. A.: Travelling bands of chemotactic bacteria: a theoretical analysis. J. Theoret. Biol. 30, 235-248 (1971) · Zbl 1170.92308
[5] Odell, G. M.: Travelling bands of chemotactic microorganisms, p. 345 in Chapter 6 of: Mathematical models in molecular and cellular biology, L. A. Segel, ed., Cambridge: Cambridge Univ. Press 1980
[6] Keller, E. F., Odell, G. M.: Necessary and sufficient conditions for chemotactic bands. Math. Biosci. 27, 309-317 (1975) · Zbl 0346.92009
[7] Scribner, T. L., Segel, L. A., Rogers, E. H.: A numerical study of the formation and propagation of travelling bands of chemotactic bacteria. J. Theoret. Biol. 46, 189-219 (1974)
[8] Lapidus, J. R., Schiller, R.: A model of travelling bands of chemotactic bacteria. Biophys. J. 22, 1-13 (1978)
[9] Johnson, R. S.: On a asymptotic solution of the Korteweg-de-Vries equation with slowly varying coefficients. J. Fluid. Mech. 60, 813-824 (1973) · Zbl 0273.76012
[10] Alt, W.: Biased random walk models for chemotaxis and related diffusion approximation. J. Math. Biol. 9, 147-177 (1980) · Zbl 0434.92001
[11] Rosen, G.: On the propagation theory for bands of chemotactic bacteria. Math. Biosci. 20, 185-189 (1974) · Zbl 0281.92006
[12] Keller, E. F.: Assessing the Keller-Segel model: How has it fared? In: Biological Growth and Spread, Jäger, Rost, and Tauth, ed., Berlin-Heidelberg-New York: Springer 1980 · Zbl 0437.92003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.