×

zbMATH — the first resource for mathematics

A \(C^ 0\) triangular plate element with one-point quadrature. (English) Zbl 0528.73069

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
74S99 Numerical and other methods in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fried, Quart. Appl. Math. 31 pp 303– (1978)
[2] , and , ’A simple triangular facet shell element with applications to linear and nonlinear equilibrium and elastic stability problems’, ISD Report No. 212, Institut fur Static and Dynamic, Stuttgart, December 1975.
[3] Hughes, Int. j. numer. methods eng. 11 pp 1529– (1977)
[4] Zienkiewicz, Int. j. numer. methods eng. 11 pp 1545– (1977)
[5] MacNeal, Computers Strucf. 8 pp 175– (1978)
[6] Kanoknukulchai, Int. j. numer. methods eng 14 pp 179– (1979)
[7] Batoz, Int. j. numer. methods eng 15 pp 1771– (1980)
[8] Garnet, Computers Struct. 12 pp 783– (1980)
[9] Zienkiewicz, Int. j. numer. methods eng 3 pp 275– (1971)
[10] Fried, Inf. J. Solids Struct. 9 pp 449– (1973)
[11] Pugh, Int. j. numer. methods eng 12 pp 1059– (1978)
[12] Hughes, Nucl. Eng. Design 46 pp 203– (1978)
[13] Malkus, Comp. Meth. Appl. Mech. Eng 15 pp 63– (1978)
[14] Hughes, Computers Struct. 8 pp 391– (1978)
[15] Parish, Comp. Meth. Appl. Mech. Eng 20 pp 323– (1979)
[16] Hughes, Int. j. numer. methods eng 15 pp 1413– (1980)
[17] Flanagan, Int. j. numer. methods eng 17 pp 679– (1981)
[18] Belytschko, Comp. Meth. Appl. Mech. Eng 29 pp 313– (1981)
[19] and , ”The linear triangular bending element”, to appear in the Proceedings of the MAFELAP 1981 Conference, Brunel University, April 28-May 1, 1981.
[20] Hughes, J. Appl. Mech. 48 pp 587– (1981)
[21] and , Theory of Plates and Shells, McGraw-Hill, New York, 1959, Section 49.
[22] and , Finite Elements: An Introduction, Prentice-Hall, Englewood Cliffs, N.J., 1981.
[23] Nagtegaal, Comp. Meth. Appl. Mech. Eng 4 pp 153– (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.