×

zbMATH — the first resource for mathematics

Disjoint cycles in digraphs. (English) Zbl 0527.05036

MSC:
05C20 Directed graphs (digraphs), tournaments
05C35 Extremal problems in graph theory
05C38 Paths and cycles
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J.-C. Bermond andC. Thomassen, Cycles in digraphs–a survey,J. Graph Theory 5 (1981), 1–43. · Zbl 0458.05035 · doi:10.1002/jgt.3190050102
[2] K. Corrádi andA. Hajnal, On the maximal number of independent circuits of a graph,Acta Math. Acad. Sci. Hungar 14 (1963), 423–443. · Zbl 0118.19001 · doi:10.1007/BF01895727
[3] G. A. Dirac andP. Erdos, On the maximal number of independent circuits in a graph,Acta Math. Acad. Sci. Hungar 14 (1963), 79–94. · Zbl 0122.24903 · doi:10.1007/BF01901931
[4] P. Erdos andL. Pósa, On independent circuits contained in a graph,Canad. J. Math. 17 (1965), 347–352. · Zbl 0129.39904 · doi:10.4153/CJM-1965-035-8
[5] S. Fortune, J. Hopcroft andJ. Wyllie, The directed subgraph homeomorphism problem,Theor. Comput. Sci. 10 (1980), 111–121. · Zbl 0419.05028 · doi:10.1016/0304-3975(80)90009-2
[6] R. Häggkvist, Equicardinal disjoint cycles in sparse graphs,to appear. · Zbl 0583.05038
[7] N. Robertson andP. D. Seymour,to appear.
[8] C. Thomassen, Even cycles in digraphs,to appear. · Zbl 0527.05036
[9] C. Thomassen, Girth in graphs,J. Comb. Th., to appear. · Zbl 0537.05034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.