×

zbMATH — the first resource for mathematics

Existence and bifurcation of stable equilibrium in two-prey, one-predator communities. (English) Zbl 0524.92025

MSC:
92D40 Ecology
34D20 Stability of solutions to ordinary differential equations
34C25 Periodic solutions to ordinary differential equations
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
92D25 Population dynamics (general)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Caswell, H. 1978. ”Predator-mediated Coexistence: a Nonequilibrium Model”.Am. Nat. 112, 127–154. · doi:10.1086/283257
[2] Cramer, N. F. and R. M. May. 1972. ”Interspecific Competition, Predation and Species Diversity: a Comment”.J. theor. Biol. 34, 289–293. · doi:10.1016/0022-5193(72)90162-2
[3] Fujii, K. 1977. ”Complexity-Stability Relationship of Two-prey-One-predator Species System Model: Local and Global Stability”.J. theor. Biol. 69, 613–623. · doi:10.1016/0022-5193(77)90370-8
[4] Gilpin, M. E. 1979. ”Sptral Chaos in a Predator-Prey Model”.Am. Nat. 113, 306–308. · doi:10.1086/283389
[5] Goh, B. S. 1978. ”Sector Stability of a Complex Ecosystem Model”.Math. Biosci. 40, 157–166. · Zbl 0386.92013 · doi:10.1016/0025-5564(78)90078-0
[6] Hsu, S. B. 1981. ”Predator-mediated Coexistence and Extinction”.Math. Biosci,54, 231–248. · Zbl 0456.92020 · doi:10.1016/0025-5564(81)90088-2
[7] Krikorian, N. 1979. ”The Volterra Model for Three Species Predator-Prey System: Boundedness and Stability”.J. math. Biol. 7, 112–132. · Zbl 0403.92021 · doi:10.1007/BF00276925
[8] LaSalle, J. P. 1960. ”Some Extensions of Lyapunov’s Second Method”.IRE Trans. Circuit Theor. CT-7, 520–527. · doi:10.1109/TCT.1960.1086720
[9] Lubchenco, J. 1978. ”Plant Species Diversity in a Marine Intertidal Community: Importance of Herbivore Food Preference and Algal Competitive Abilities”.Am. Nat. 112, 23–39. · doi:10.1086/283250
[10] Maly, E. J. 1975. ”Interactions among the Predatory RotiferAsplanchna and Two Prey,Paramecium andFuglena”.Ecology 56, 346–358. · doi:10.2307/1934965
[11] Marsden, J. E. and M. McCracken. 1976.The Hopf Bifurcation and Its Application. Berlin: Springer. · Zbl 0346.58007
[12] Paine, R. T. 1966. ”Food Web Complexity and Species Diversity”.Am. Nat. 100, 65–75. · doi:10.1086/282400
[13] Parrish, J. D. and S. B. Saila. 1970. ”Interspecific Competition, Predation and Species Diversity”.J. theor. Biol. 27, 207–220. · doi:10.1016/0022-5193(70)90138-4
[14] Takeuchi, Y. and N. Adachi. 1980. ”The Existence of Globally Stable Equilibria of Ecosystems of the Generalized Volterra Type”.J. math. Biol. 10, 401–415. · Zbl 0458.92019 · doi:10.1007/BF00276098
[15] Takeuchi, Y. and N. Adachi. 1982. ”Stable Equilibrium of Systems of Generalized Volterra Type”.J. math. Analysis Applic. 88, 157–169. · Zbl 0491.34048 · doi:10.1016/0022-247X(82)90183-4
[16] —-, and H. Tokumaru, 1978. ”Global Stability of Ecosystems of the Generalized Volterra Type”.Math. Biosci. 42, 119–136. · Zbl 0394.92024 · doi:10.1016/0025-5564(78)90010-X
[17] Vance, R. R. 1978. ”Predation and Resource Partitioning in One Predator-Two Prey Model Communities”.Am. Nat. 112, 797–813. · doi:10.1086/283324
[18] Yodzis, P. 1976. ”The Effects of Harvesting on Competitive Systems”.Bull. math. Biol. 38, 97–109. · Zbl 0327.92002 · doi:10.1007/BF02471750
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.