zbMATH — the first resource for mathematics

A duality for Boolean algebras with operators. (English) Zbl 0524.06022

06E05 Structure theory of Boolean algebras
Full Text: DOI
[1] P. Crawley andR.-P. Dilworth,Algebraic theory of lattices, Prentice Hall, Englewood Cliffs (1973). · Zbl 0494.06001
[2] G.Gr?tzer,Lattice theory: first concepts and distributive lattices, Freeman and Co (1971).
[3] G. Hansoul,Quasi-ordered systems I, Bull. Soc. Roy. Sci. Li?ge,44 (1975), 91-103.
[4] G. Hansoul,Quasi-ordered systems III, Bull. Soc. Roy. Sci. Li?ge,45 (1976), 322-352.
[5] G.Hansoul,Syst?mes relationnels et alg?bres multiformes, th?se de doctorat, 1981.
[6] L. Henkin, J. O. Monk andA. Tarski,Cylindric algebras, part. I, Studies in Logic, vol. 64, North-Holland, Amsterdam (1971). · Zbl 0214.01302
[7] B. J?nsson andA. Tarski,Boolean algebras with operators, part I, Amer. J. of Math.,73 (1951), 891-939. · Zbl 0045.31505
[8] H.-E. Pickett,Homomorphisms and subalgebras of multialgebras, Pacific J. Math.,21 (1967), 327-342. · Zbl 0149.26101
[9] R. S.Pierce,Introduction to the theory of abstract algebras, Athena Series, Holt (1968). · Zbl 0159.57801
[10] R. S.Pierce,Compact zero-dimensional metric spaces of finite type, Mem. Amer. Math. Soc.,130 (1972). · Zbl 0253.54028
[11] H. A. Priestley,Representation of distributive lattice by means of ordered Stone spaces, Bull. London Math. Soc.,2 (1970), 186-190. · Zbl 0201.01802
[12] M. H. Stone,The theory of representations for Boolean algebras, Trans. Amer. Math. Soc.,40 (1936), 37-111. · Zbl 0014.34002
[13] M. H. Stone,Topological representations of distributive lattices and Brouwerian logics, Casopis Pest. Math.,67 (1937), 1-25. · Zbl 0018.00303
[14] A. Urquhart,A topological representation theory for lattice, Algebra Universalis,8/1 (1978), 45-58. · Zbl 0382.06010
[15] J. Williams,Structure diagrams for primitive Boolean algebras, Proc. Amer. Math. Soc.,47 (1975), 1-9. · Zbl 0299.06010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.