×

zbMATH — the first resource for mathematics

The modal logic of provability. The sequential approach. (English) Zbl 0523.03014

MSC:
03B45 Modal logic (including the logic of norms)
03F05 Cut-elimination and normal-form theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BellissimaF., ?On the modal logic corresponding to diagonalizable algebra theory?, Boll. Un. Mat. Ital. (5), 15-B (1978), 915-930. · Zbl 0405.03012
[2] BernardiC., ?The uniqueness of the fixed point in every diagonalizable algebra? (The algebraization of the theories which express Theor, VIII), Studia Logica 35 (1976). 335-343. · Zbl 0345.02020
[3] Boolos, G., The Unprovability of Consistency. An Essay in Modal Logic, Cambridge U.P., 1979. · Zbl 0409.03009
[4] BoolosG., ?Extremely undecidable sentences?, J. Symbolic Logic, 47 (1982) 191-196. · Zbl 0485.03003
[5] Gentzen G., Collected Papers, North Holland, 1969.
[6] GödelK., ?Eine Interpretation des intuitionistischen Aussagenkalküls?, Ergebnisse eines Mathematischen Kolloquiums 4 (1933), 39-40. · Zbl 0007.19303
[7] Kleene, S. C., Mathematical Logic. Wiley, 1967.
[8] LeivantD., ?On the proof theory of the modal logic for arithmetic provability?, J. Symbolic Logic 46 (1981), 531-538. · Zbl 0464.03019
[9] LöbM. H., ?Solution of a problem of Leon Henkin?, J. Symbolic 20 (1955), 115-118. · Zbl 0067.00202
[10] MirolliM., ?On the axiomatization of finite frames of the modal system GL?, Boll. Un. Mat. Ital. (5) 17-B (1980), 1075-1085.
[11] MontagnaF., ?On the diagonalizable algebra of Peano arithmetic?, Boll. Un. Mat. Ital. (5) 16-B (1979), 795-812. · Zbl 0419.08010
[12] SambinG., ?An effective fixed point theorem in intuitionistic diagonalizable algebras? (The algebraization of the theories which express Theor, IX), Studia Logica 35 (1976), 345-361. · Zbl 0357.02028
[13] SambinG. and ValentiniS., ?A modal sequent calculus for a fragment of arithmetic?, Studia Logica 39, (1980), 245-256. · Zbl 0457.03016
[14] Sambin, G. and Valentini, S., ?Is there a syntactic proof of cut elimination for GL??, submitted to J. Symbolic Logic. · Zbl 0457.03016
[15] Smorynski, C., ?Beth’s theorem and self-referential sentences, Logic Colloquium ’77, A. Macintyre, L. Pacholski, J. Paris (eds), North Holland, 1978. · Zbl 0453.03018
[16] Smorynski, C., ?Fixed point algebra?, to appear.
[17] SmorynskiC., ?Review to [3]?, J. Symbolic Logic 46 (1981), 871-873.
[18] Solitro, U. and Valentini, S., ?The modal logic of consistency assertion of Peano Arithmetic?, Z. Math. Logik Grundlag. Math., to appear. · Zbl 0521.03010
[19] SolovayR. M., ?Provability interpretations of modal logic?, Israel J. Math. 25 (1976), 287-304. · Zbl 0352.02019
[20] Takeuti, G., Proof Theory, North Holland, 1975.
[21] UrsiniA., ?Intuitionistic diagonalizable algebras?, Alg. Universalis 9 (1979), 229-237. · Zbl 0423.03029
[22] ValentiniS., ?Cut elimination in a modal sequent calculus for K?, Boll. Un. Mat. Ital. (6) 1-B (1982), 119-130
[23] Valentini, S., ?The modal logic of provability: cut elimination?, submitted to J. Philosophical Logic. · Zbl 0535.03031
[24] Visser, A., ?Aspect of diagonalization and provability?, dissertation, University of Utrecht, 1981.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.