zbMATH — the first resource for mathematics

Period doubling bifurcations for families of maps on \(R^ n\). (English) Zbl 0521.58041

37G99 Local and nonlocal bifurcation theory for dynamical systems
37D99 Dynamical systems with hyperbolic behavior
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
PDF BibTeX Cite
Full Text: DOI
[1] Collet, P.; Eckmann, J.-P., Universal Properties of Continuous Maps of the Interval to Itself, (1979), New York · Zbl 0456.58016
[2] Collet, P.; Eckmann, J.-P.; Lanford, O. E., Universal Properties of Maps on an Interval, Commun. Math. Phys., 76, 211-254, (1980) · Zbl 0455.58024
[3] Derrida, B.; Gervois, A.; Pomeau, Y., No article title, J. Phys., A12, 269, (1979)
[4] Feigenbaum, M., No article title, J. Stat. Phys., 19, 25, (1978) · Zbl 0509.58037
[5] Feigenbaum, M., No article title, Phys. Lett., 74A, 375, (1979)
[6] Franceschini, V., A Feigenbaum Sequence of Bifurcations in the Lorenz Model, J. Stat. Phys., 22, 397-406, (1980)
[7] Franceschini, V.; Tebaldi, C., Sequences of Infinite Bifurcations and Turbulence in a 5-Modes Truncation of the Navier-Stokes Equations, J. Stat. Phys., 21, 707-726, (1979)
[8] Lanford, O. E., Remarks on the Accumulation of Period-Doubling Bifurcations, (1979), New York
[9] A. Libchaber and J. Maurer, Une expérience de Rayleigh-Bénard de géométrie réduite,J. de Physique41, Colloque C3:51-56 (1980).
[10] M. Campanino, H. Epstein, and D. Ruelle, On Feigenbaum’s Functional Equation, preprint IHES; M. Campanino and H. Epstein, On the Existence of Feigenbaum’s Fixed Point,Commun. Math. Phys., to appear.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.