×

zbMATH — the first resource for mathematics

On U-statistics and von Mises’ statistics for weakly dependent processes. (English) Zbl 0519.60028

MSC:
60F15 Strong limit theorems
60F05 Central limit and other weak theorems
60F17 Functional limit theorems; invariance principles
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Berkes, I., Philipp, W.: Approximation theorems for independent and weakly dependent random vectors. Ann. of Probability 7, 29-54 (1979) · Zbl 0392.60024 · doi:10.1214/aop/1176995146
[2] Billingsley, P.: Convergence of probability measures, London: John Wiley & Sons 1968 · Zbl 0172.21201
[3] Blom, G.: Some properties of incomplete U-statistics. Biometrica 63, 573-580 (1976) · Zbl 0352.62034
[4] Blum, J.R., Hanson, D.L., Koopmans, L.H.: On the strong law of large numbers for a class of stochastic processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 2, 1-11 (1963) · Zbl 0117.35603 · doi:10.1007/BF00535293
[5] Bradley, R.C.: On the ?-mixing condition for stationary random sequences. Duke Math. J. 47, 421-433 (1980) · Zbl 0442.60035 · doi:10.1215/S0012-7094-80-04725-0
[6] Bradley, R.C.: A sufficient condition for linear growth of variances in a stationary random sequence. Proc. Amer. Math. Soc. 83, 586-589 (1981) · Zbl 0476.60037 · doi:10.1090/S0002-9939-1981-0627698-5
[7] Brown, B.M., Kildea, D.G.: Reduced U-statistics and the Hodges-Lehmann estimator. Ann. Statist. 6, 828-835 (1978) · Zbl 0408.62024 · doi:10.1214/aos/1176344256
[8] Callaert, H., Janssen, P.: The Berry-Esséen theorem for U-statistics. Ann. Statist. 6, 417-421 (1978) · Zbl 0393.60022 · doi:10.1214/aos/1176344132
[9] Dehling, H.: Limit theorems for sums of weakly dependent Banach space valued random variables. Z. Wahrscheinlichkeitstheorie verw. Gebiete 63, 393-432 (1983) · Zbl 0496.60004 · doi:10.1007/BF00542537
[10] Doob, J.L.: Stochastic Processes. London: John Wiley & Sons 1953 · Zbl 0053.26802
[11] Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Statist. 39, 1563-1572 (1968) · Zbl 0169.20602
[12] Gál, I.S., Koksma, J.F.: Sur l’ordre de grandeur des fonctions sommable. Proc. Koninkl. Neder. Akad. Wetensch. Ser. A, 53, 638-653 (1950) · Zbl 0041.02406
[13] Hoeffding, W.: A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19, 293-325 (1948) · Zbl 0032.04101 · doi:10.1214/aoms/1177730196
[14] Ibragimov, I.A., Linnik, Y.V.: Independent and stationary sequences of random variables. Groningen: Wolters-Noordhoff Publishing 1971 · Zbl 0219.60027
[15] Ibragimov, I.A., Rozanov, Y.A.: Gaussian random processes. Berlin-Heidelberg-New York: Springer 1978 · Zbl 0392.60037
[16] Lehmann, E.L.: Consistency and unbiasedness of certain nonparametric tests. Ann. Math. Statist. 22, 165-179 (1951) · Zbl 0045.40903 · doi:10.1214/aoms/1177729639
[17] Loynes, R.M.: An invariance principle for reversed martingales. Proc. Amer. Math. Soc. 25, 56-64 (1970) · Zbl 0218.60046 · doi:10.1090/S0002-9939-1970-0256444-5
[18] Miller, R.G., Sen, P.K.: Weak convergence of U-statistics and v. Mises’ differentiable statistical functionals. Ann. Math. Statist. 43, 31-41 (1972) · Zbl 0238.62057 · doi:10.1214/aoms/1177692698
[19] Oodaira, H., Yoshihara, K.: Functional central limit theorems for strictly stationary processes satisfying the strong mixing condition. K?dai Math. Sem. Reports 24, 259-269 (1971) · Zbl 0245.60006 · doi:10.2996/kmj/1138846576
[20] Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Memoirs Amer. Math. Soc. 161, (1975) · Zbl 0361.60007
[21] Schneider, E.: On the speed of convergence in the random central limit theorem for ?-mixing sequences. Z. Wahrscheinlichkeitstheorie verw. Gebiete 58, 125-138 (1981) · Zbl 0465.60027 · doi:10.1007/BF00536200
[22] Sen, P.K.: Limiting behaviour of regular functionals of empirical distributions for stationary *-mixing processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 25, 71-82 (1972) · Zbl 0238.62097 · doi:10.1007/BF00533337
[23] Sen, P.K.: Almost sure behaviour of U-statistics and v. Mises’ differentiable statistical functions. Ann. Statist. 2, 387-395 (1974) · Zbl 0276.60009 · doi:10.1214/aos/1176342675
[24] Volkonski, V.A., Rozanov, Y.A.: Some limit theorems for random functions II. Theory Probability Appl. 6, 186-198 (1961)
[25] Yokoyama, R.: Convergence of moments in the central limit theorem for stationary ?-mixing sequences. Tsukuba J. Math. 3, 1-6 (1979) · Zbl 0434.60026
[26] Yoshihara, K.: Limiting behaviour of U-statistics for stationary, absolutely regular processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 35, 237-252 (1976) · Zbl 0314.60028 · doi:10.1007/BF00532676
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.