×

zbMATH — the first resource for mathematics

Dirac quantum fields on a manifold. (English) Zbl 0518.58018

MSC:
53D50 Geometric quantization
81T05 Axiomatic quantum field theory; operator algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Avis and C. Isham, Quantum field theory and fibre bundles in a general space-time, Recent Developments in Gravitation , Plenum Press, New York, 1979.
[2] P. J. M. Bongaarts, The electron-positron field, coupled to external electromagnetic potentials, as an elementary \?* algebra theory, Ann. Physics 56 (1970), 108 – 139. · doi:10.1016/0003-4916(70)90007-2 · doi.org
[3] Y. Choquet-Bruhat, Hyperbolic partial differential equations on a manifold, Battelle Rencontres. 1967 Lectures in Mathematics and Physics, Benjamin, New York, 1968, pp. 84 – 106.
[4] Yvonne Choquet-Bruhat, Cecile DeWitt-Morette, and Margaret Dillard-Bleick, Analysis, manifolds and physics, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. · Zbl 0385.58001
[5] Bryce S. Dewitt, Charles F. Hart, and Christopher J. Isham, Topology and quantum field theory, Phys. A 96 (1979), no. 1-2, 197 – 211. · doi:10.1016/0378-4371(79)90207-3 · doi.org
[6] J. Dimock, Algebras of local observables on a manifold, Comm. Math. Phys. 77 (1980), no. 3, 219 – 228. · Zbl 0455.58030
[7] Sergio Doplicher, Rudolf Haag, and John E. Roberts, Fields, observables and gauge transformations. I, Comm. Math. Phys. 13 (1969), 1 – 23. · Zbl 0175.24704
[8] Robert Geroch, Spinor structure of space-times in general relativity. I, J. Mathematical Phys. 9 (1968), 1739 – 1744. · Zbl 0165.29402 · doi:10.1063/1.1664507 · doi.org
[9] Robert Geroch, Domain of dependence, J. Mathematical Phys. 11 (1970), 437 – 449. · Zbl 0189.27602 · doi:10.1063/1.1665157 · doi.org
[10] Rudolf Haag and Daniel Kastler, An algebraic approach to quantum field theory, J. Mathematical Phys. 5 (1964), 848 – 861. · Zbl 0139.46003 · doi:10.1063/1.1704187 · doi.org
[11] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge University Press, London-New York, 1973. Cambridge Monographs on Mathematical Physics, No. 1. · Zbl 0265.53054
[12] Peter Hajicek, Observables for quantum fields on curved background, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 535 – 566.
[13] C. J. Isham, Quantum field theory in curved space-times, a general mathematical framework, Differential geometrical methods in mathematical physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977) Lecture Notes in Math., vol. 676, Springer, Berlin, 1978, pp. 459 – 512.
[14] C. J. Isham, Twisted quantum fields in a curved space-time, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1710, 383 – 404. · doi:10.1098/rspa.1978.0140 · doi.org
[15] B. Kay, Linear spin-zero quantum fields in external gravitational and scalar fields. I, II, Comm. Math. Phys. 62 (1978), 55; 71 (1980), 29.
[16] André Lichnerowicz, Champs spinoriels et propagateurs en relativité générale, Bull. Soc. Math. France 92 (1964), 11 – 100 (French). · Zbl 0138.44301
[17] -, Topics on space-times, Battelle Recontres , Benjamin, New York, 1968. · Zbl 0187.19504
[18] Jean Leray, Hyperbolic differential equations, The Institute for Advanced Study, Princeton, N. J., 1953. · Zbl 0588.35002
[19] W. Pauli, Contributions mathématiques à la théorie des matrices de Dirac, Ann. Inst. H. Poincaré VI (1963), 8. · JFM 62.1616.03
[20] Herbert-Rainer Petry, Exotic spinors in superconductivity, J. Math. Phys. 20 (1979), no. 2, 231 – 240. · doi:10.1063/1.524069 · doi.org
[21] I. E. Segal, Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I, Mat.-Fys. Medd. Danske Vid. Selsk. 31 (1959), no. 12, 39 pp. (1959). · Zbl 0085.21806
[22] Joseph Slawny, On factor representations and the \?*-algebra of canonical commutation relations, Comm. Math. Phys. 24 (1972), 151 – 170. · Zbl 0225.46068
[23] A. Wightman, The Dirac equation, Aspects of Quantum Theory , Cambridge Univ. Press, Cambridge, 1972, pp. 109.
[24] A. S. Wightman, Relativistic wave equations as singular hyperbolic systems, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 441 – 447.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.