×

zbMATH — the first resource for mathematics

Analysis and optimal control of time-varying systems via Chebyshev polynomials. (English) Zbl 0517.93031

MSC:
93C05 Linear systems in control theory
42C10 Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.)
93C99 Model systems in control theory
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] BRISTRITZ Y., I.E.E.E. Trans, autom. Control 24 pp 741– (1979) · Zbl 0437.93016 · doi:10.1109/TAC.1979.1102155
[2] CHANG R. Y., Int. J. Systems Sci 13 pp 1125– (1982) · Zbl 0486.93021 · doi:10.1080/00207728208926416
[3] CHEN C. F., Inf. J. Systems Sci 6 pp 833– (1975) · Zbl 0311.93015 · doi:10.1080/00207727508941868
[4] CHEN W. L., Int. J. Control 27 pp 917– (1978) · Zbl 0378.93016 · doi:10.1080/00207177808922422
[5] HILDEBRAND F. B., Introduction to Numerical Analysis (1974) · Zbl 0279.65001
[6] Hsu N. S., Int. J. Control 33 pp 1107– (1981) · Zbl 0464.93027 · doi:10.1080/00207178108922979
[7] HWANG C, Int. J. Control 34 pp 577– (1981) · Zbl 0469.93033 · doi:10.1080/00207178108922549
[8] KLEINMAN D. L., I.E.E.E. Trans, autom. Control 13 pp 354– (1968) · doi:10.1109/TAC.1968.1098926
[9] SHIH Y. M., J. Chinese Inst, Eng 6 pp 135– (1983) · doi:10.1080/02533839.1983.9676735
[10] SHIH Y. P., Proc. National Sci. Council 5 pp 130– (1981)
[11] STAVROULAKIS P., J. Franklin Inst 26 pp 5– (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.