×

zbMATH — the first resource for mathematics

A four-noded thin-plate bending element using shear constraints - A modified version of Lyons’ element. (English) Zbl 0515.73069

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
74S99 Numerical and other methods in solid mechanics
74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Lyons, L.P.R., A general finite element system with special reference to the analysis of cellular structures, () · Zbl 0554.73074
[2] Dhatt, G., Numerical analysis of thin shells by curved triangular elements based on discrete Kirchhoff hypothesis, (), 13-14
[3] Batoz, J.-L.; Bathe, K.-J.; Ho, L.-W., A study of three-node plate bending elements, Internat J. numer. meths. engrg., 15, 1771-1812, (1980) · Zbl 0463.73071
[4] Irons, B.M., The semi-loof shell element, (), 197-222
[5] Irons, B.M.; Ahmad, S., Techniques of finite elements, (1980), Ellis Horwood Chichester
[6] Baldwin, J.T.; Razzaque, A.; Irons, B.M., Shape function subroutine for an isoparametric thin plate element, Internat. J. numer. meths. engrg., 7, 431-440, (1973)
[7] Zienkiewicz, O.C., The finite element method, (1977), McGraw-Hill New York · Zbl 0435.73072
[8] Mindlin, R.D., Influence of rotary inertia and shear on flexural motions of isotropic elastic plates, J. appl. mech., 18, 31-38, (1951) · Zbl 0044.40101
[9] Zienkiewicz, O.C.; Taylor, R.L.; Too, J.M., Reduced integration techniques in general analysis of plates and shells, Internat. J. numer. meths. engrg., 3, 275-290, (1971) · Zbl 0253.73048
[10] Pawsey, S.E.; Clough, R.W., Improved numerical integration of thick shell finite elements, Internat. J. numer. meths. engrg., 3, 545-586, (1971) · Zbl 0248.73035
[11] Irons, B.M.; Razzaque, A., Shape function formulations for elements other than displacement models, (), 4/59-4/72 · Zbl 0315.73091
[12] Tessler, A.; Dong, S.B., On a hierarchy of conforming Timoshenko beam elements, Comput. & structures, 8, 175-183, (1978)
[13] Hughes, T.J.R.; Tezduyar, T.E., Finite elements based upon Mindlin plate theory, with particular reference to the four-node bi-linear isoparametric element, J. appl. mech., 587-596, (1981) · Zbl 0459.73069
[14] MacNeal, R.H., A simple quadrilatral shell element, Comput. & structures, 8, 175-183, (1978) · Zbl 0369.73085
[15] Robinson, J.; Haggenmacher, G.W., Lora—an accurate four node stress plate bending element, Internat. J. numer. meths. engrg., 14, 296-306, (1979) · Zbl 0394.73001
[16] Hughes, T.J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nuclear engrg. design, 46, 203-222, (1978)
[17] Pugh, E.D.L.; Hinton, E.; Zienkiewicz, O.C., A study of quadrilateral plate bending elements with reduced integration, Internat. J. numer. meths. engrg., 12, 1059-1079, (1978) · Zbl 0377.73065
[18] Belytschko, T.; Tsay, C.S.; Liu, W.K., A stabilisation matrix for the bilinear Mindlin plate element, Comput. meths. appl. mech. engrg., 29, 313-327, (1981) · Zbl 0474.73091
[19] Hughes, T.J.R.; Cohen, M., The ‘heterosis’ finite element for plate bending, Comput. & structures, 9, 445-450, (1978) · Zbl 0394.73076
[20] M.A. Crisfield, A quadratic Mindlin element using shear constraints, Comput & Structures, to appear. · Zbl 0533.73073
[21] de Veubeke, B.Fraeijs, Displacement and equilibrium models in the finite element method, (), 145-197 · Zbl 0245.73031
[22] Timoshenko, S.P., On the correction for shear of the differential equation for transverse vibration of prismaticbars, Philos. mag., 41, 744-746, (1921)
[23] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and shells, (1959), McGraw-Hill London · Zbl 0114.40801
[24] Djahani, P., Elastic-plastic analysis of discretely stiffened plates, ()
[25] Hinton, E.; Scott, F.C.; Ricketts, R.E., Local least squares stress smoothing for parabolic isoparametric elements, Internat. J. numer. meths. engrg., 9, 235-238, (1975)
[26] Razzaque, A., Program for triangular bending elements with derivative smoothing, Internat. J. numer. meths. engrg., 6, 333-343, (1973)
[27] Allman, D.J., Triangular finite elements for plate bending with constant and linearly varying bending moments, () · Zbl 0323.73044
[28] Morley, L.S.D., Skew plates and structures, (1963), Pergamon Oxford · Zbl 0124.17704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.