zbMATH — the first resource for mathematics

Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions. (English) Zbl 0515.49013

49K27 Optimality conditions for problems in abstract spaces
46G05 Derivatives of functions in infinite-dimensional spaces
58C20 Differentiation theory (Gateaux, Fréchet, etc.) on manifolds
49J45 Methods involving semicontinuity and convergence; relaxation
49M37 Numerical methods based on nonlinear programming
46B20 Geometry and structure of normed linear spaces
90C30 Nonlinear programming
Full Text: DOI
[1] Aubin, J.P., Locally Lipschitz cooperative games, J. math. econom., 8, 241-262, (1981) · Zbl 0461.90086
[2] Aubin, J.P.; Clarke, F.H., Shadow prices and duality for a class of optimal control problems, SIAM J. control optim., 17, 567-586, (1979) · Zbl 0439.49018
[3] Bishop E. & Phelps R.R., The support functionals of a convex set in convexity (Edited by V.L. Klee), Proc. Symp. Pure Math. 7, 27-35. · Zbl 0149.08601
[4] Clarke, F.H., Generalized gradients and applications, Trans. am. math. soc., 205, 247-262, (1975) · Zbl 0307.26012
[5] Clarke, F.H., Generalized gradients of Lipschitz functionals, Adv. math., 40, 52-67, (1981) · Zbl 0463.49017
[6] Clarke, F.H., The erdmann condition and Hamiltonian inclusions in optimal control and the calculus of variations, Can. J. math., 32, 494-507, (1980) · Zbl 0461.49007
[7] Cornet B., Regular properties of tangent and normal cones, to appear. · Zbl 0616.49009
[8] Ekeland, I., On the variational principle, J. math. analysis applic., 47, 324-353, (1974) · Zbl 0286.49015
[9] Hiriart-Urruty, J.B., Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. opl. res., 4, 79-97, (1979) · Zbl 0409.90086
[10] Penot, J.P., A characterization of tangential regularity, Nonlinear analysis, 5, 625-643, (1981) · Zbl 0472.58010
[11] Rockafellar, R.T., Clarke’s tangent cones and the boundaries of closed sets in \(R\)^n, Nonlinear analysis, 3, 145-154, (1979) · Zbl 0443.26010
[12] Rockafellar, R.T., Generalized directional derivatives and subgradients of nonconvex functions, Can. J. math., 32, 257-280, (1980) · Zbl 0447.49009
[13] Rockafellar, R.T., Proximal subgradients, marginal values, and augmented Lagrangians in nonconvex optimization, Math. opl. res., 6, 424-436, (1981) · Zbl 0492.90073
[14] Rockafellar, R.T., La theorie des sous-gradients et ses applications à l’optimisation, (1978), Les Presses de l’Université de Montréal
[15] Rockafellar, R.T., The theory of subgradients and its applications to problems of optimization, (1981), Heldermann Berlin · Zbl 0462.90052
[16] Thibault, L., Quelques propriétés des sous-différentials de fonctions réelles localement lipschitziennes definies sur un espace de Banach séparable, C.R. hebd. Séanc. acad. sci. Paris, ser A-B, 282, A507-A510, (1976)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.