×

zbMATH — the first resource for mathematics

Residuation groupoids. (English) Zbl 0513.06007

MSC:
06F05 Ordered semigroups and monoids
20M99 Semigroups
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Baer, Free sums of groups and their generalizations. An analysis of the associative law. Am. Journ. Math. 71, (1949), 706–742. · Zbl 0033.34504
[2] G. Birkhoff, Lattice ordered groups, Ann. Math. 43 (1942), 298–331. · Zbl 0060.05808 · doi:10.2307/1968871
[3] B. Bosbach, Komplement√§re Halbgruppen, Fund. Math. 64 (1969), 254–287 und 69 (1970), 1–14. · Zbl 0183.30603
[4] B. Bosbach, Concerning cone algebras (to appear in Alg. Univ.) · Zbl 0507.06013
[5] B. Bosbach, Concerning semiclans Arch. d. Math. 37 (1981), 316–324. · Zbl 0472.06028 · doi:10.1007/BF01234363
[6] B. Bosbach, Concerning bricks Acta Math. Ac. Sc. Hung. 38 (1981), 89–104. · Zbl 0533.06009 · doi:10.1007/BF01917525
[7] A. Diego, Sobre Algebras de Hilbert, Tesis de doctorado en la Universidad Nacional de Buenos Aires, (1961), 89 pag.
[8] D. Hilbert, Die logischen Grundlagen der Mathematik, Math. Ann. 88 (1923), 151–165. · JFM 48.1120.01 · doi:10.1007/BF01448445
[9] A. Horn, and A. Tarski, Measures in boolean algebras, Trans. A.M.S., (1948) 467–497. · Zbl 0035.03001
[10] K. Iwasawa, On the structure of conditionally complete lattice groups, Jap. Journ. Math. 18 (1943), 177–189. · Zbl 0061.03408
[11] D. A. Kappos, Probability algebras and stochastic spaces, Academic Press, New York and London, 1969. · Zbl 0196.18501
[12] E. C. Weinberg, Completely distributive lattice-ordered groups, Pac. Journ. Math. 12 (1962), 1131–1137. · Zbl 0111.24301 · doi:10.2140/pjm.1962.12.1131
[13] O. Wyler, Clans, Comp. Math. 17 (1965), 172–189. · Zbl 0146.02004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.