×

zbMATH — the first resource for mathematics

Set-theoretical models of lambda-calculus: theories, expansions, isomorphisms. (English) Zbl 0513.03009

MSC:
03B40 Combinatory logic and lambda calculus
03C65 Models of other mathematical theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barendregt, H.P., The type-free lambda-calculus, (), 1092-1132, North-Holland, Amsterdam
[2] Barendregt, H.P., The lambda calculus, Its syntax and semantics, (1981), North-Holland, Amsterdam · Zbl 0467.03010
[3] Baeten, J.; Boerboom, B., ω can be anything it shouldn’t be, Indag. math., 41, 111-120, (1979) · Zbl 0417.03006
[4] Barendregt, H.; Koymans, K., Comparing some classes of lambda-calculus models, (), 287-302
[5] Barendregt, H.P.; Longo, G., Equality of lambda-terms in the model Tω, (), 303-339
[6] Barendregt, H.; Longo, G., Recursion theoretic operators and morphisms on numbered sets, Tech. mon. LCS/MIT, 119, (1982), to appear
[7] H. Barendregt, M. Coppo and M. Dezani, A filter lambda-model and the completeness of type assignment, J. Symbolic Logic, to appear. · Zbl 0545.03004
[8] K. Bruce and G. Longo, A note on Combinatory Algebras and their expansions, to appear. · Zbl 0555.03006
[9] Coppo, M.; Dezani, M.; Venneri, B., Principal type schemes and lambda-calculus semantics, (), 535-560
[10] Coppo, M.; Dezani, M.; Honsell, F.; Longo, G., Extended type structures and filter lambda-models, (), North-Holland, Amsterdam, to appear · Zbl 0558.03007
[11] Curry, H.B.; Feys, R., Combinatory logic, (1958), North-Holland, Amsterdam · Zbl 0175.27601
[12] Engeler, E., Algebras and combinators, Algebra universalis, 389-392, (1981) · Zbl 0482.08005
[13] Hindley, R.; Longo, G., Lambda calculus models and extensionality, Z. math. logik grundlag. math., 26, 289-310, (1980) · Zbl 0453.03015
[14] ()
[15] Levy, J., An algebraic interpretation of λ-calculus and a labelled λ-calculus, (), 147-165
[16] Longo, G., Hereditary partial effective functionals in any finite type, Forsh. inst. math., (1982), E.T.H Zürich, Preliminary Note
[17] Meyer, A., What is a model of lambda-calculus?, Techn. mon. LCS-MIT, Information and control, (June 1981), to appear
[18] Plotkin, G., A set-theoretical definition of application, Memo MIP-R-95, (1972), School of AI Edinburgh
[19] Rogers, H., Theory of recursive functions and effective computability, (1967), McGraw Hill New York · Zbl 0183.01401
[20] Scott, D.S., Continuous lattices, (), 97-136
[21] Scott, D.S., Data types as lattices, SIAM J. comput., 5, 3, 522-587, (1976) · Zbl 0337.02018
[22] Scott, D.S., Lambda-calculus: some models, some philosophy, (), 223-266, North-Holland, Amsterdam
[23] Scott, D.S., Relating theories of lambda-calculus, (), 403-450
[24] Wadsworth, C.P., The relation between computational and denotational properties for Scott’s D∞-models of the λ-calculus, SIAM J. comput., 5, 3, 488-521, (1976) · Zbl 0346.02013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.