zbMATH — the first resource for mathematics

Explicit algorithms for the nonlinear dynamics of shells. (English) Zbl 0512.73073

74S05 Finite element methods applied to problems in solid mechanics
74K25 Shells
74H99 Dynamical problems in solid mechanics
74K15 Membranes
74B20 Nonlinear elasticity
74-04 Software, source code, etc. for problems pertaining to mechanics of deformable solids
74S99 Numerical and other methods in solid mechanics
Full Text: DOI
[1] Belytschko, T.; Marchertas, A.H., Nonlinear finite element method for plates and its application to the dynamic response of reactor fuel subassemblies, Trans. ASME J. pressure vessel technology, 251-257, (1974)
[2] Bazeley, G.P.; Cheung, W.K.; Irons, R.M.; Zienkiewicz, O.C., Triangular elements in plate bendingconforming and nonconforming solutions in matrix methods and structural mechanics, (), 547-576
[3] Irons, B.M.; Razzaque, A., Experience with the patch test for convergence of finite element, (), 577-588
[4] Belytschko, T.; Schwer, L.; Klein, M.J., Large displacement transient analysis of space frames, Internat. J. numer. meths. engrg., 11, 65-84, (1977) · Zbl 0347.73053
[5] Razzaque, A., Program for triangular bending element with derivative smoothing, Internat. J. numer. meths. engrg., 5, 588-589, (1973)
[6] Hughes, T.J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in finite element analysis of plates, Nuclear engineering & design, 46, 203-222, (1978)
[7] Hughes, T.J.R.; Taylor, R.L.; Kanoknukulchai, W., A simple and efficient finite element for plate bending, Internat. J. numer. meths. engrg., 11, 1529-1547, (1977) · Zbl 0363.73067
[8] Flanagan, D.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Internat. J. numer. meths. engrg., 17, 679-706, (1981) · Zbl 0478.73049
[9] Belytschko, T.; Tsay, C.S.; Liu, W.K., A stabilization matrix for the bilinear Mindlin plate element, Comput. meths. appl. mech. engrg., 29, 313-327, (1981) · Zbl 0474.73091
[10] Taylor, R.L., Finite element for general shell analysis, ()
[11] Kosloff, D.; Frazier, G., Treatment of hourglass patterns in low order finite element codes, Numerical and analytical methods in geomechanics, 2, 52-72, (1978)
[12] Argyris, J.H.; Kelsey, S.; Kamel, H., Matrix methods of structural analysis: a precis of recent developments, () · Zbl 0131.22802
[13] Wempner, G.A., Finite elements, finite rotations, and small strains of flexible shells, Internat. J. solids and structures, 5, 117-153, (1969) · Zbl 0164.26505
[14] Murray, D.W.; Wilson, E.L., Finite element large deflection analysis of plates, ASCE, J. engrg. mech. div., 143-165, (1969) · Zbl 0185.52705
[15] Belytschko, T.; Hsieh, B.J., Nonlinear transient finite element analysis with convected coordinates, Internat. J. numer. meths. engrg., 7, 255-271, (1973) · Zbl 0265.73062
[16] Belytschko, T.; Glaum, L.W., Applications of higher order corotational stretch theories to nonlinear finite element analysis, Comput. & structures, 10, 175-182, (1979) · Zbl 0393.73085
[17] Malvern, L.E., Introduction to the mechanics of a continuous medium, (1969), Prentice-Hall Englewood Cliffs, NJ · Zbl 0181.53303
[18] Belytschko, T.; Mullen, R., WHAMS: a program for transient analysis of structures and continua, Structural mechanics software series, 2, 151-212, (1978)
[19] Belytschko, T., Nonlinear analysis-descriptions and numerical stability, (), 537-562
[20] Ahmad, S., Pseudo-isoparametric finite elements for shell and plate analysis, ()
[21] Ahmad, S.; Irons, B.M.; Zienkiewicz, O.C., Analysis of thick and thin shell structures by curved finite elements, Internat. J. numer. meths. engrg., 2, 419-451, (1970)
[22] Hughes, T.J.R.; Liu, W.K., Nonlinear finite element analysis of shells: part 1. three-dimensional shells, Comput. meth. appl. mech. and engrg., 26, 331-362, (1981) · Zbl 0461.73061
[23] Mindlin, R.D., Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates, J. appl. mech., 18, 31-38, (1951) · Zbl 0044.40101
[24] S.W. Key, HONDO — a finite element computer program for the large deformation dynamic response of axisymmetric solid, Rept. SLA-74-0039, Sandia Laboratories.
[25] Mindle, W.; Belytschko, T., A study of shear factors in reduced-selective integration Mindlin beam elements, Computers & structures, 17, 3, 334-344, (1983) · Zbl 0512.73068
[26] Timoshenko, S.; Goodier, J.N., Theory of elasticity, (1951), McGraw-Hill New York · Zbl 0045.26402
[27] D. Shantaram, D.R.J. Owen and O.C. Zienkiewicz, Dynamic transient behavior of two- and three-dimensional structues including plasticity large deformation effects and fluid interaction. Earthquake Engineering and Structural Dynamics 4, 561-578.
[28] Timoshenko, S.; Woinowsky-Krieger, S., Theory of plates and shells, (1911), McGraw-Hill New York · Zbl 0114.40801
[29] Balmer, H.A.; Witmer, E.A., Theoretical-experimental correlation of large dynamic and permanent deformation of impulsively loaded simple structures, ()
[30] Morino, L.; Leech, J.W.; Witmer, E.A., An improved numerical calculation technique for large elasticplastic transient deformations of thin shells: part 2-evaluation and applications, J. appl. mech., 429-435, (1971) · Zbl 0218.73049
[31] Bathe, K.J.; Ramm, E.; Wilson, E.L., Finite element formulations for large deformation dynamic analysis, Internat. J. numer. meths. engrg., 9, 353-386, (1975) · Zbl 0304.73060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.