zbMATH — the first resource for mathematics

Symmetric random walks in random environments. (English) Zbl 0512.60058

60G50 Sums of independent random variables; random walks
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
60J65 Brownian motion
60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI
[1] Kesten, H., Kozlov, M., Spitzer, F.: Compositio Math.30, 145-168 (1975)
[2] Ritter, G.A.: Random walk in a random environment. Thesis, Cornell University, 1976 · Zbl 0331.31011
[3] Chernov, A.A.: Usp. Phys. Nauk (in Russian)100, 277-328 (1970)
[4] Temkin, D.E.: J. Crystal Growth5, 193-202 (1969)
[5] Solomon, F.: Ann. Prob.3, 1-31 (1975) · Zbl 0305.60029
[6] Sinai, Ya.G.: Theor. Prob. Appl. (in press)
[7] Anshelevich, V.V., Vologodskii, A.V.: J. Stat. Phys.25, 419-430 (1981) · Zbl 0512.60059
[8] Alexander, S., Bernasconi, J., Orbach, R.: Phys. Rev. B17, 4311-4314 (1978)
[9] Bernasconi, J., Beyeler, H.U., Strässler, S.: Phys. Rev. Lett.42, 819-822 (1979)
[10] Alexander, S., Bernasconi, J., Schneider, W.R., Orbach, R.: Rev. Mod. Phys.53, 175-198 (1981)
[11] Papanicolaou, G., Varadhan, F.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Colloquia mathematica societatis Janos Bolyai 27, Random fields, Vol. 2, pp. 835-873. Amsterdam, Oxford, New York: North-Holland Publishing Company 1981
[12] Kozlov, S.: Mat. Sb. (in Russian)113, 302-328 (1980)
[13] Friedrichs, K.O.: Perturbation of spectra in Hilbert space. Providence, R.I.: Math. Soc. 1965 · Zbl 0142.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.