×

zbMATH — the first resource for mathematics

The optimal lattice quantizer in three dimensions. (English) Zbl 0509.52010

MSC:
52C07 Lattices and convex bodies in \(n\) dimensions (aspects of discrete geometry)
Software:
ALTRAN; MACSYMA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barnes, E. S., The covering of space by spheres, Canad. J. Math., 8, 293, (1956) · Zbl 0072.03603
[2] Barnes, E. S.; Dickson, T. J.; Barnes, E. S.; Dickson, T. J., Corrigendum to : “extreme coverings of n-space by spheres”, J. Austral. Math. Soc., 8, 638, (1968) · Zbl 0164.35305
[3] Brown, W. S., ALTRAN User’s Manual, (1977)
[4] Cassels, J. W. S., An introduction to the geometry of numbers, (1971) · Zbl 0209.34401
[5] Conway, J. H.; Sloane, N. J. A., Vorono\(\breve{i}\) regions of lattices, second moments of polytopes, and quantization, IEEE Trans. Inform. Theory, 28, 211, (1982) · Zbl 0495.94003
[6] Conway, J. H.; Sloane, N. J. A., Fast quantizing and decoding algorithms for lattice quantizers and codes, IEEE Trans. Inform. Theory, 28, 227, (1982) · Zbl 0497.94013
[7] Fast 3- and 8-dimensional quantizers and decodersNational Telecommunications Record-1981, Vol. 3, IEEE Press, New York, F4.2.1-F4.2.4
[8] Some recent developments in quantization theoryProc.12th Annual Symposium on System TheoryVirginia Beach, VA1980May 19-20
[9] Gersho, Allen, Asymptotically optimal block quantization, IEEE Trans. Inform. Theory, 25, 373, (1979) · Zbl 0409.94013
[10] Gersho, Allen, On the structure of vector quantizers, IEEE Trans. Inform. Theory, 28, 157, (1982)
[11] Lekkerkerker, C. G., Geometry of numbers, (1969) · Zbl 0198.38002
[12] MACSYMA reference manual, version 9Cambridge, MA1977
[13] Voronoi, G., Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math., 133, 97, (1907) · JFM 38.0261.01
[14] Voronoi, G., Recherches sur LES paralléloèdres primitifs (part 1), J. Reine Angew. Math., 134, 198, (1908) · JFM 39.0274.01
[15] Zador, P., Asymptotic quantization error of continuous signals and the quantization dimension, IEEE Trans. Inform. Theory, 28, 139, (1982) · Zbl 0476.94008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.